I : Giải PT
\(\sqrt{x^2-10+25}-\sqrt{x^2+6x+9}=2\)
help me !!!
I: Giải PT
\(\sqrt{2-x}+\sqrt{2+x}+\sqrt{4-x^2}=2\)
help me !!!
ĐKXĐ: \(-2\le x\le2\)
Đặt \(\sqrt{2-x}+\sqrt{2+x}=a>0\Rightarrow a^2=4+2\sqrt{4-x^2}\)
Phương trình trở thành:
\(a+\frac{a^2-4}{2}=2\)
\(\Leftrightarrow a^2+2a-8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2-x}+\sqrt{2+x}=2\)
Mà \(\sqrt{2-x}+\sqrt{2+x}\ge\sqrt{2-x+2+x}=2\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left[{}\begin{matrix}2-x=0\\2+x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
I : Giải PT
\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2\sqrt{x-5}}=2\sqrt{2}\)
help me !!!
I : Giải PT
\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{x-5}}=2\sqrt{2}\)
help me !!!
I Giải PT
\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
help me !!!
\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)(ĐK: \(\sqrt{2x-5}\ge0\Leftrightarrow x\ge\frac{5}{2}\)
\(\Leftrightarrow\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)
\(\Leftrightarrow\sqrt{\left(2x-5\right)+2\sqrt{2x-5}.3+9}+\sqrt{\left(2x-5\right)-2\sqrt{2x-5}+1}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\)
\(\Leftrightarrow\sqrt{2x-5}+3+\left|\sqrt{2x-5}-1\right|=4\)(vì \(\sqrt{2x-5}\ge0\) nên \(\sqrt{2x-5}+3\ge3>0\))
-TH: \(\sqrt{2x-5}-1\ge0\Leftrightarrow\sqrt{2x-5}\ge1\Leftrightarrow2x-5\ge1\Leftrightarrow x\ge3\) thì ta được phương trình:
\(\sqrt{2x-5}+3+\sqrt{2x-5}-1=4\)
\(\Leftrightarrow2\sqrt{2x-5}=2\)
\(\Leftrightarrow\sqrt{2x-5}=1\)
\(\Leftrightarrow2x-5=1\)
\(\Leftrightarrow x=3\left(chọn\right)\)
-TH: \(\sqrt{2x-5}-1< 0\Leftrightarrow x< 3\) thì ta được phương trình:
\(\sqrt{2x-5}+3+1-\sqrt{2x-5}=4\)
\(\Leftrightarrow4=4\)(luôn đúng với mọi \(\frac{5}{2}\le x< 3\))
Vậy nghiệm của phương trình là \(\frac{5}{2}\le x\le3\)
I : Giải PT
1) \(\sqrt{x^2-4}+\sqrt{x+2}=0\)
help me
\(\left\{{}\begin{matrix}\sqrt{x^2-4}\ge0\\\sqrt{x+2}\ge0\end{matrix}\right.\Rightarrow\sqrt{x^2-4}+\sqrt{x+2}\ge0mà:\sqrt{x^2-4}+\sqrt{x+2}=0\Rightarrow\left\{{}\begin{matrix}x^2-4=0\\x+2=0\end{matrix}\right.\Rightarrow x=-2\)
Em ko chắc đâu nhất là cái đk ý.
Nhận xét x = -2 là một nghiệm do đó xét x khác -2:
ĐK: \(x\ge2\). Đặt \(\sqrt{x+2}=a\ge2;\sqrt{x-2}=b\ge0\) . Theo đề bài thì:
ab + a = 0 <=> a(b+1) = 0 <=> a = 0 (loại) hoặc b = - 1( loại)
Vậy 1 nghiệm x = - 2???
giải pt sau
a) \(\sqrt{1-4x+4x^2}=5\)
b)\(\sqrt{x^2+6x+9}=3x-1\)
Help me plsssssssssssss
a) \(\sqrt{1-4x+4x^2}=5\)
\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\)
\(\Leftrightarrow\left|1-2x\right|=5\)
\(\Leftrightarrow2x-1=5\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
b) \(\sqrt{x^2+6x+9}=3x-1\)
\(\Leftrightarrow\sqrt{\left(x+3\right)^2=3x-1}\)
\(\Leftrightarrow\left|x+3\right|=3x-1\)
\(\Leftrightarrow x+3=3x-1\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
\(a,\sqrt{1-4x+4x^2}=5\\ \Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\\ \Leftrightarrow\left|1-2x\right|=5\)
\(TH_1:x\le\dfrac{1}{2}\)
\(1-2x=5\\ \Leftrightarrow x=-2\left(tm\right)\)
\(TH_2:x\ge\dfrac{1}{2}\)
\(-1+2x=5\\ \Leftrightarrow x=3\left(tm\right)\)
Vậy \(S=\left\{-2;3\right\}\)
\(b,\sqrt{x^2+6x+9}=3x-1\\ \Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\\ \Leftrightarrow\left|x+3\right|=3x-1\)
\(TH_1:x\ge-3\\ x+3=3x-1\\ \Leftrightarrow-2x=-4\Leftrightarrow x=2\left(tm\right)\)
\(TH_2:x< 3\\ -x-3=3x-1\\ \Leftrightarrow-4x=2\\ \Leftrightarrow x=-\dfrac{1}{2}\left(tm\right)\)
Vậy \(S=\left\{2;-\dfrac{1}{2}\right\}\)
I : Giải PT
\(x^2-7x+14=2\sqrt{x-3}\)
help me!!!
giải pt
\(\sqrt{x^2+2x+5}+\sqrt{x^2-6x+10}=5\)
Ta có PT <=> \(\sqrt{x^2+2x+5}-\left(x+\frac{5}{3}\right)\) + \(\sqrt{x^2-6x+10}-x\)= \(5-2x-\frac{5}{3}\)
<=> \(\frac{\frac{20}{9}-\frac{4x}{3}}{\sqrt{x^2+2x+5}+\left(x+\frac{5}{3}\right)}\)+ \(\frac{10-6x}{\sqrt{x^2-6x+10}+x}\)= \(\frac{10}{3}-2x\)
Tới đây là có nhân tử chung là x - \(\frac{5}{3}\)
Bạn làm phần còn lại đi
I : Giải Pt
\(x^2-3x+8=4\sqrt{3x-5}\)
help me
ĐK:x>=5/3
PT <=> \(x^2-3x=4\left(\sqrt{3x-5}-2\right)\)
\(\Leftrightarrow x\left(x-3\right)-\frac{12\left(x-3\right)}{\sqrt{3x-5}+2}=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-\frac{12}{\sqrt{3x-5}+2}\right)=0\)
<=> x = 3 (giải cả hai cái ngoặc nó đều ra x = 3)
P/s: Sai thì thôi nha!