Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Thị Thu Hiền
Xem chi tiết
Hàm Vân Lâm
Xem chi tiết
Nguyen Thien
11 tháng 3 2018 lúc 13:54

Dùng định lí Viète vào pt cho ta:
\(\left\{{}\begin{matrix}S=x_1+x_2=2\\P=x_1x_2=\dfrac{1}{3}\end{matrix}\right.\)

a) \(A=\left(x_1-1\right)\left(x_2-1\right)=x_1x_2-\left(x_1+x_2\right)+1=-\dfrac{2}{3}\)

b)\(B=x_1\left(x_2-1\right)+x_2\left(x_1-1\right)=2x_1x_2-\left(x_1+x_2\right)=-\dfrac{4}{3}\)

c)\(C=\sqrt{x_1}+\sqrt{x_2}=\sqrt{\left(\sqrt{x_1}+\sqrt{x_2}\right)^2}=\sqrt{x_1+x_2+2\sqrt{x_1x_2}}=\sqrt{2+2\sqrt{\dfrac{1}{3}}}\)

Tới đó hết giải được tiếp :)
d)\(D=x_1\sqrt{x_2}+x_2\sqrt{x_1}=\sqrt{x_1x_2}.\left(\sqrt{x_1}+\sqrt{x_2}\right)\) rồi thế kết quả câu C và biểu thức từ trên.

Nguyễn Ngọc Linh
Xem chi tiết
Yeutoanhoc
22 tháng 5 2021 lúc 21:41

`x^2+3x+1=(x+3)sqrt{x^2+1}`
`<=>x(x+3)+1=(x+3)sqrt{x^2+1}`
`<=>(x+3)(sqrt{x^2+1}-x)=1`
`<=>((x+3)(sqrt{x^2+1-x)(sqrt{x^2+1}+x))/(sqrt{x^2+1}+x)=1`
`<=>(x+3)/(sqrt{x^2+1}+x)=1`
`<=>x+3=sqrt{x^2+1}+x`
`<=>sqrt{x^2+1}=3`
`<=>x^2+1=9`
`<=>x^2=8`
`<=>x=+-2sqrt2`
Vậy `S={2sqrt2,-2sqrt2}`

Trần Ái Linh
22 tháng 5 2021 lúc 21:41

`x^2+3x+1=(x+3)\sqrt(x^2+1)`

`<=> x^4+6x^3+11x^2+6x+1=(x^2+6x+9)(x^2+1)`

`<=> x^4+6x^3+11x^2+6x+1=x^4+6x^3+10x^2+6x+9`

`<=> 11x^2+1=10x^2+9`

`<=> x^2=8`

`<=> x=\pm 2\sqrt2`.

Yeutoanhoc
22 tháng 5 2021 lúc 21:42

Sửa lại nha lỗi quá '-'

`x^2+3x+1=(x+3)sqrt{x^2+1}`
`<=>x(x+3)+1=(x+3)sqrt{x^2+1}`
`<=>(x+3)(sqrt{x^2+1}-x)=1`
`<=>((x+3)(sqrt{x^2+1}-x)(sqrt{x^2+1}+x))/(sqrt{x^2+1}+x)=1`
`<=>(x+3)/(sqrt{x^2+1}+x)=1`
`<=>x+3=sqrt{x^2+1}+x`
`<=>sqrt{x^2+1}=3`
`<=>x^2+1=9`
`<=>x^2=8`
`<=>x=+-2sqrt2`
Vậy `S={2sqrt2,-2sqrt2}`

Lê Thúy Kiều
Xem chi tiết
minh nguyễn
Xem chi tiết
Akai Haruma
23 tháng 5 2018 lúc 18:56

Lời giải:

Áp dụng định lý Viete cho pt bậc 2 ta có:

\(\left\{\begin{matrix} x_1+x_2=3\\ x_1x_2=1\end{matrix}\right.\)

Khi đó:

\(A=x_1\sqrt{x_1}+x_2\sqrt{x_2}=(\sqrt{x_1})^3+(\sqrt{x_2})^3\)

\(=(\sqrt{x_1}+\sqrt{x_2})(x_1-\sqrt{x_1x_2}+x_2)\)

\(=\sqrt{(\sqrt{x_1}+\sqrt{x_2})^2}(x_1+x_2-\sqrt{x_1x_2})\)

\(=\sqrt{x_1+x_2+2\sqrt{x_1x_2}}(x_1+x_2-\sqrt{x_1x_2})\)

\(=\sqrt{3+2}(3-1)=2\sqrt{5}\)

ngonhuminh
25 tháng 5 2018 lúc 0:45

∆=9-4=5

x1=(3+√5)/2; x2=(3-√5)/2

4x1=(√5+1)^2; 4x2=(√5-1)^2

4.A=(3+√5)(√5+1)+(3-√5)(√5-1)

=(4√5+3+5)+(4√5-3-5)=8√5

A=2√5

ngonhuminh
25 tháng 5 2018 lúc 1:06

≠ gi robot

Ken_Kaneki_65_56
Xem chi tiết
Etermintrude💫
27 tháng 5 2021 lúc 16:11

undefined

CHÚC BẠN HỌC TỐT NHÁyeu

Bình Trần Thị
Xem chi tiết
Đặng Minh Triều
18 tháng 2 2016 lúc 13:24

ĐK:x\(\ge\)0

Đặt t=x2+3x(t\(\ge\) 0)ta được:

\(\sqrt{t+12}=t\Leftrightarrow t^2=t+12\)

<=>t2-t-12=0

\(\Delta=49\Rightarrow\sqrt{\Delta}=7\)

\(\Delta>0,\text{phương trình có 2 nghiệm phân biệt}\)

\(t_1=4\left(thỏa\right);t_2=-3\left(loại\right)\)

t=4=>x2+3x=4

<=>x2+3x-4=0

\(\Delta=25\Rightarrow\sqrt{\Delta}=5;\Delta>0,pt\text{ có 2 nghiệm phân biệt:}\)

\(x_1=1\left(thỏa\right);x_2=-4\left(loại\right)\)

Vậy S={1}

Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 7 2021 lúc 20:06

\(\Leftrightarrow\left(x^2+2\right)\sqrt{x^2+x+1}-2\left(x^2+2\right)+x^3-x^2-5x+6=0\)

\(\Leftrightarrow\left(x^2+2\right)\left(\sqrt{x^2+x+1}-2\right)+\left(x-2\right)\left(x^2+x-3\right)=0\)

\(\Leftrightarrow\dfrac{\left(x^2+2\right)\left(x^2+x-3\right)}{\sqrt{x^2+x+1}+2}+\left(x-2\right)\left(x^2+x-3\right)=0\)

\(\Leftrightarrow\left(x^2+x-3\right)\left(\dfrac{x^2+2}{\sqrt{x^2+x+1}+2}+x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-3=0\Rightarrow x=...\\x^2+2=\left(2-x\right)\left(\sqrt{x^2+x+1}+2\right)\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x^2+2x-2=\left(2-x\right)\sqrt{x^2+x+1}\)

Đặt \(\sqrt{x^2+x+1}=t>0\Rightarrow x^2=t^2-x-1\)

\(\Rightarrow t^2+x-3=\left(2-x\right)t\)

\(\Leftrightarrow t^2+\left(x-2\right)t+x-3=0\)

\(\Leftrightarrow t^2-1+\left(x-2\right)\left(t+1\right)=0\)

\(\Leftrightarrow\left(t+1\right)\left(t+x-3\right)=0\)

\(\Leftrightarrow t=3-x\)

\(\Leftrightarrow\sqrt{x^2+x+1}=3-x\) (\(x\le3\))

\(\Leftrightarrow x^2+x+1=x^2-6x+9\)

\(\Leftrightarrow x=\dfrac{8}{7}\)

Xích U Lan
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 4 2021 lúc 23:54

\(\Leftrightarrow x^2+1-\left(x+3\right)\sqrt{x^2+1}+3x=0\)

Đặt \(\sqrt{x^2+1}=t>0\)

\(\Rightarrow t^2-\left(x+3\right)t+3x=0\)

\(\Delta=\left(x+3\right)^2-12x=\left(x-3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{x+3+x-3}{2}=x\\t=\dfrac{x+3-x+3}{2}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+1}=x\left(x\ge0\right)\\\sqrt{x^2+1}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=x^2\left(vô-nghiệm\right)\\x=\pm2\sqrt{2}\end{matrix}\right.\)

迪丽热巴·迪力木拉提
23 tháng 4 2021 lúc 23:59

ĐK: Với mọi x thuộc R.

Ta có: \(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)

\(\Leftrightarrow\left(x^2+3x+1\right)^2=\left[\left(x+3\right)\sqrt{x^2+1}\right]^2\)

\(\Leftrightarrow x^4+6x^3+11x^2+6x+1=\left(x+3\right)^2\left(x^2+1\right)\)

\(\Leftrightarrow x^4+6x^3+11x^2+6x+1=x^4+6x^3+10x^2+6x+9\)

\(\Leftrightarrow x^2-8=0\)

\(\Leftrightarrow x^2=8\)

\(\left[{}\begin{matrix}x=2\sqrt{2}\\x=-2\sqrt{2}\end{matrix}\right.\)

Vậy....

Miner Đức
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 3 2021 lúc 5:18

a.

\(\Leftrightarrow2x^2\ge3\Leftrightarrow x^2\ge\dfrac{3}{2}\Rightarrow\left[{}\begin{matrix}x\ge\sqrt{\dfrac{3}{2}}\\x\le-\sqrt{\dfrac{3}{2}}\end{matrix}\right.\)

b.

\(\Leftrightarrow\left(1-x\right)\left(x-3\right)\ge0\Rightarrow1\le x\le3\)

c.

\(\Leftrightarrow\sqrt{1-3x}\le2-x\Leftrightarrow\left\{{}\begin{matrix}1-3x\ge0\\2-x\ge0\\1-3x\le x^2-4x+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\x\le2\\x^2-x+3\ge0\end{matrix}\right.\) \(\Leftrightarrow x\le\dfrac{1}{3}\)