\(\sqrt{ }\)x2 = 3x-2
GIẢI CÁC PT SAU:
x2 - 6x + 9=\(4\sqrt{x^2-6x+6}\)
x2 - x + 8 - \(4\sqrt{x^2-x+4}=0\)
x2 + \(\sqrt{4x^2-12x+44}=3x+4\)
cho PT; 3x2 -6x+1=0. gọi x1,x2 là 2 nghiệm của PT. ko giải PT tính
a,A=(x1-1)(x2-1)
b, B=x1(x2-1)+x2(x1-1)
c, C=\(\sqrt{x1}+\sqrt{x2}\)
d, D=\(x1\sqrt{x2}+x2\sqrt{x1}\)
Dùng định lí Viète vào pt cho ta:
\(\left\{{}\begin{matrix}S=x_1+x_2=2\\P=x_1x_2=\dfrac{1}{3}\end{matrix}\right.\)
a) \(A=\left(x_1-1\right)\left(x_2-1\right)=x_1x_2-\left(x_1+x_2\right)+1=-\dfrac{2}{3}\)
b)\(B=x_1\left(x_2-1\right)+x_2\left(x_1-1\right)=2x_1x_2-\left(x_1+x_2\right)=-\dfrac{4}{3}\)
c)\(C=\sqrt{x_1}+\sqrt{x_2}=\sqrt{\left(\sqrt{x_1}+\sqrt{x_2}\right)^2}=\sqrt{x_1+x_2+2\sqrt{x_1x_2}}=\sqrt{2+2\sqrt{\dfrac{1}{3}}}\)
Tới đó hết giải được tiếp :)
d)\(D=x_1\sqrt{x_2}+x_2\sqrt{x_1}=\sqrt{x_1x_2}.\left(\sqrt{x_1}+\sqrt{x_2}\right)\) rồi thế kết quả câu C và biểu thức từ trên.
x2+3x+1=(x+3)\(\sqrt{x^2+1}\)
`x^2+3x+1=(x+3)sqrt{x^2+1}`
`<=>x(x+3)+1=(x+3)sqrt{x^2+1}`
`<=>(x+3)(sqrt{x^2+1}-x)=1`
`<=>((x+3)(sqrt{x^2+1-x)(sqrt{x^2+1}+x))/(sqrt{x^2+1}+x)=1`
`<=>(x+3)/(sqrt{x^2+1}+x)=1`
`<=>x+3=sqrt{x^2+1}+x`
`<=>sqrt{x^2+1}=3`
`<=>x^2+1=9`
`<=>x^2=8`
`<=>x=+-2sqrt2`
Vậy `S={2sqrt2,-2sqrt2}`
`x^2+3x+1=(x+3)\sqrt(x^2+1)`
`<=> x^4+6x^3+11x^2+6x+1=(x^2+6x+9)(x^2+1)`
`<=> x^4+6x^3+11x^2+6x+1=x^4+6x^3+10x^2+6x+9`
`<=> 11x^2+1=10x^2+9`
`<=> x^2=8`
`<=> x=\pm 2\sqrt2`.
Sửa lại nha lỗi quá '-'
`x^2+3x+1=(x+3)sqrt{x^2+1}`
`<=>x(x+3)+1=(x+3)sqrt{x^2+1}`
`<=>(x+3)(sqrt{x^2+1}-x)=1`
`<=>((x+3)(sqrt{x^2+1}-x)(sqrt{x^2+1}+x))/(sqrt{x^2+1}+x)=1`
`<=>(x+3)/(sqrt{x^2+1}+x)=1`
`<=>x+3=sqrt{x^2+1}+x`
`<=>sqrt{x^2+1}=3`
`<=>x^2+1=9`
`<=>x^2=8`
`<=>x=+-2sqrt2`
Vậy `S={2sqrt2,-2sqrt2}`
Giải các bất phương trình sau:
a.(x+1)(-x2+3x-2)<0
b.\(\sqrt{x^2-5x+4}+2\sqrt{x+5}>2\sqrt{x-4}+\sqrt{x^2+4x-5}\)
cho phương trình \(x^2-3x+1=0\) có hai nghiệm x1 x2 tính
\(x1\sqrt{x1}+x2\sqrt{x2}\)
Lời giải:
Áp dụng định lý Viete cho pt bậc 2 ta có:
\(\left\{\begin{matrix} x_1+x_2=3\\ x_1x_2=1\end{matrix}\right.\)
Khi đó:
\(A=x_1\sqrt{x_1}+x_2\sqrt{x_2}=(\sqrt{x_1})^3+(\sqrt{x_2})^3\)
\(=(\sqrt{x_1}+\sqrt{x_2})(x_1-\sqrt{x_1x_2}+x_2)\)
\(=\sqrt{(\sqrt{x_1}+\sqrt{x_2})^2}(x_1+x_2-\sqrt{x_1x_2})\)
\(=\sqrt{x_1+x_2+2\sqrt{x_1x_2}}(x_1+x_2-\sqrt{x_1x_2})\)
\(=\sqrt{3+2}(3-1)=2\sqrt{5}\)
∆=9-4=5
x1=(3+√5)/2; x2=(3-√5)/2
4x1=(√5+1)^2; 4x2=(√5-1)^2
4.A=(3+√5)(√5+1)+(3-√5)(√5-1)
=(4√5+3+5)+(4√5-3-5)=8√5
A=2√5
Cho phương trình: x2 - 3x + m - 2 = 0. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thõa mãn: \(\dfrac{1}{\sqrt{3x_1-1}}+\dfrac{1}{\sqrt{3x_2-1}}=1\)
giải phương trình sau : \(\sqrt{x^2+3x+12}\) = x2+3x
ĐK:x\(\ge\)0
Đặt t=x2+3x(t\(\ge\) 0)ta được:
\(\sqrt{t+12}=t\Leftrightarrow t^2=t+12\)
<=>t2-t-12=0
\(\Delta=49\Rightarrow\sqrt{\Delta}=7\)
\(\Delta>0,\text{phương trình có 2 nghiệm phân biệt}\)
\(t_1=4\left(thỏa\right);t_2=-3\left(loại\right)\)
t=4=>x2+3x=4
<=>x2+3x-4=0
\(\Delta=25\Rightarrow\sqrt{\Delta}=5;\Delta>0,pt\text{ có 2 nghiệm phân biệt:}\)
\(x_1=1\left(thỏa\right);x_2=-4\left(loại\right)\)
Vậy S={1}
giải phương trình :
(x2+2)\(\sqrt{x^2+x +1}+x^3-3x^2-5x+2=0\)
\(\Leftrightarrow\left(x^2+2\right)\sqrt{x^2+x+1}-2\left(x^2+2\right)+x^3-x^2-5x+6=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(\sqrt{x^2+x+1}-2\right)+\left(x-2\right)\left(x^2+x-3\right)=0\)
\(\Leftrightarrow\dfrac{\left(x^2+2\right)\left(x^2+x-3\right)}{\sqrt{x^2+x+1}+2}+\left(x-2\right)\left(x^2+x-3\right)=0\)
\(\Leftrightarrow\left(x^2+x-3\right)\left(\dfrac{x^2+2}{\sqrt{x^2+x+1}+2}+x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-3=0\Rightarrow x=...\\x^2+2=\left(2-x\right)\left(\sqrt{x^2+x+1}+2\right)\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^2+2x-2=\left(2-x\right)\sqrt{x^2+x+1}\)
Đặt \(\sqrt{x^2+x+1}=t>0\Rightarrow x^2=t^2-x-1\)
\(\Rightarrow t^2+x-3=\left(2-x\right)t\)
\(\Leftrightarrow t^2+\left(x-2\right)t+x-3=0\)
\(\Leftrightarrow t^2-1+\left(x-2\right)\left(t+1\right)=0\)
\(\Leftrightarrow\left(t+1\right)\left(t+x-3\right)=0\)
\(\Leftrightarrow t=3-x\)
\(\Leftrightarrow\sqrt{x^2+x+1}=3-x\) (\(x\le3\))
\(\Leftrightarrow x^2+x+1=x^2-6x+9\)
\(\Leftrightarrow x=\dfrac{8}{7}\)
Giải phương trình: x2 + 3x + 1 =\(\left(x+3\right)\sqrt{x^2+1}\)
\(\Leftrightarrow x^2+1-\left(x+3\right)\sqrt{x^2+1}+3x=0\)
Đặt \(\sqrt{x^2+1}=t>0\)
\(\Rightarrow t^2-\left(x+3\right)t+3x=0\)
\(\Delta=\left(x+3\right)^2-12x=\left(x-3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{x+3+x-3}{2}=x\\t=\dfrac{x+3-x+3}{2}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+1}=x\left(x\ge0\right)\\\sqrt{x^2+1}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=x^2\left(vô-nghiệm\right)\\x=\pm2\sqrt{2}\end{matrix}\right.\)
ĐK: Với mọi x thuộc R.
Ta có: \(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)
\(\Leftrightarrow\left(x^2+3x+1\right)^2=\left[\left(x+3\right)\sqrt{x^2+1}\right]^2\)
\(\Leftrightarrow x^4+6x^3+11x^2+6x+1=\left(x+3\right)^2\left(x^2+1\right)\)
\(\Leftrightarrow x^4+6x^3+11x^2+6x+1=x^4+6x^3+10x^2+6x+9\)
\(\Leftrightarrow x^2-8=0\)
\(\Leftrightarrow x^2=8\)
\(\left[{}\begin{matrix}x=2\sqrt{2}\\x=-2\sqrt{2}\end{matrix}\right.\)
Vậy....
1)
a) -2x2+3 ≤ 0
b) -x2- 2x + 3 ≥ 0
c) \(\sqrt{1-3x}\) + x - 2 ≤ 0
a.
\(\Leftrightarrow2x^2\ge3\Leftrightarrow x^2\ge\dfrac{3}{2}\Rightarrow\left[{}\begin{matrix}x\ge\sqrt{\dfrac{3}{2}}\\x\le-\sqrt{\dfrac{3}{2}}\end{matrix}\right.\)
b.
\(\Leftrightarrow\left(1-x\right)\left(x-3\right)\ge0\Rightarrow1\le x\le3\)
c.
\(\Leftrightarrow\sqrt{1-3x}\le2-x\Leftrightarrow\left\{{}\begin{matrix}1-3x\ge0\\2-x\ge0\\1-3x\le x^2-4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\x\le2\\x^2-x+3\ge0\end{matrix}\right.\) \(\Leftrightarrow x\le\dfrac{1}{3}\)