Rút gọn biểu thức:
A= Cos4a-Sin4a+2sin2a
bài 3 Rút gọn các biểu thức sau
a) A= sin4a - cos4a +2sin2a . cos2a
$\sin^4 a-cos^4 a+2\sin^2 a.\cos^2 a\\=(\sin^4 a-\cos^4 a)+2\sin^2 a.\cos^2 a\\=(\sin^2 a+\cos^2 a)(\sin^2-\cos ^2 )+2\sin^2 a.\cos^2 a\\=\sin^2 a-\cos^2 a+2\sin^2 a.\cos^2 a$
Rút gọn các biểu thức sau :
a)\(\dfrac{1+\sin4a-\cos4a}{1+\cos4a+\sin4a}\)
b) \(\dfrac{1+\cos a}{1-\cos a}\tan^2\dfrac{a}{2}-\cos^2a\)
c) \(\dfrac{\cos2x-\sin4x-\cos6x}{\cos2x+\sin4x-\cos6x}\)
thu gọn biểu thức
sin4a + cos4a + 2sin2a cos2a
\(\sin^4a+cos^4a+2sin^2a.cos^2a=\left(sin^2a+cos^2a\right)^2=1\)
\(\sin^4\alpha+2\cdot\sin^2\alpha\cdot\cos^2\alpha+\cos^4\alpha\)
\(=\left(\sin^2\alpha+\cos^2\alpha\right)^2\)
=1
cho \(sin\alpha=\frac{1}{4}\). tính giá trị biểu thức A=(sin4a+2sin2a).cosa
\(A=\left(2sin2a.cos2a+2sin2a\right)cosa\)
\(=2sin2a.cosa\left(cos2a+1\right)=4sina.cosa.cosa\left(1-2sin^2a+1\right)\)
\(=4sina.cos^2a\left(2-2sin^2a\right)=8sina\left(1-sin^2a\right)\left(1-sin^2a\right)\)
\(=8sina.\left(1-sin^2a\right)^2=8.\frac{1}{4}\left(1-\frac{1}{16}\right)^2=...\)
Rút gọn biểu thức: B = 2 sin 2 a - 2 sin 2 a . cos 2 a 2 sin 2 a + 2 sin 2 a . cos 2 a :
A. tana
B. t a n 2 a
C. t a n 2 2 a
D. tan2a
Rút gọn biểu thức: B = 2 sin 2 a - sin 2 a . cos 2 a 2 sin 2 a + 2 sin 2 a . cos 2 a :
A. tan 2 a
B. tana
C. tan 2 2 a
D. tan2a
Rút gọn
\(A=\left(\frac{1}{cos2x}+1\right).tanx\)
\(B=\frac{1+sin4a-cos4a}{1+sin4a+cos4a}\)
\(C=\frac{sin2a+sina}{1+cos2a+cosa}\)
\(A=\frac{\left(1+cos2x\right)}{cos2x}.tanx=\frac{\left(1+2cos^2x-1\right)}{cos2x}.\frac{sinx}{cosx}=\frac{2cos^2x.sinx}{cos2x.cosx}=\frac{2sinx.cosx}{cos2x}=\frac{sin2x}{cos2x}=tan2x\)
\(B=\frac{1+2sin2a.cos2a-1+2sin^22a}{1+2sin2a.cos2a+2cos^22a-1}=\frac{2sin2a\left(sin2a+cos2a\right)}{2cos2a\left(sin2a+cos2a\right)}=\frac{sin2a}{cos2a}=tan2a\)
\(C=\frac{2sina.cosa+sina}{1+2cos^2a-1+cosa}=\frac{sina\left(2cosa+1\right)}{cosa\left(2cosa+1\right)}=\frac{sina}{cosa}=tana\)
a) cos4a - sin4a +1 = 2cos2a
b) cos6a + sin6a + 3sin2a.cos2a = 1
b: \(=\left(\cos^2\alpha+\sin^2\alpha\right)^3-3\cos^2\alpha\sin^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)+3\cdot\sin^2\alpha\cdot\cos^2\alpha\)
=1
\(cos^4a-sin^4a+1=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)+1\)
\(=cos^2a-sin^2a+1=cos^2a-sin^2a+sin^2a+cos^2a\)
\(=2cos^2a\)
\(cos^6a+sin^6a+3sin^2a.cos^2a\)
\(=\left(cos^2a+sin^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)+3sin^2a.cos^2a\)
\(=1-3sin^2a.cos^2a.1+3sin^2a.cos^2a\)
\(=1\)
Á dụng công thức \(cotx-cot2x=\dfrac{1}{sin2x}\) để rút gọn biểu thức sau
\(S=\dfrac{1}{sina}+\dfrac{1}{sin2a}+\dfrac{1}{sin4a}+\dfrac{1}{sin8a}\)