Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuấn Hùng
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2021 lúc 23:54

4) Ta có: \(\left(x+3\right)\cdot\sqrt{10-x^2}=x^2-x-12\)

\(\Leftrightarrow\left(x+3\right)\cdot\sqrt{10-x^2}-\left(x-4\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(\sqrt{10-x^2}-x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\\sqrt{10-x^2}=x-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\10-x^2=x^2-8x+16\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x^2-8x+16-10+x^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\2x^2-8x+6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\2\left(x^2-4x+3\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\\left(x-1\right)\left(x-3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\\x=3\end{matrix}\right.\)

Nguyễn Aí Linh
Xem chi tiết
Nguyễn Đức Trí
12 tháng 9 2023 lúc 8:19

c) \(\sqrt[]{8+\sqrt[]{x}}+\sqrt{5-\sqrt[]{x}}=5\)

\(\Leftrightarrow\left(\sqrt[]{8+\sqrt[]{x}}+\sqrt{5-\sqrt[]{x}}\right)^2=25\left(1\right)\left(đkxđ:0\le x\le25\right)\)

Áp dụng Bất đẳng thức Bunhiacopxki cho 2 cặp số dương \(\left(1;\sqrt[]{8+\sqrt[]{x}}\right);\left(1;\sqrt{5-\sqrt[]{x}}\right)\)

\(\left(1.\sqrt[]{8+\sqrt[]{x}}+1.\sqrt{5-\sqrt[]{x}}\right)^2\le\left(1^2+1^2\right)\left(8+\sqrt[]{x}+5-\sqrt[]{x}\right)=26\)

\(\left(1\right)\Leftrightarrow26=25\left(vô.lý\right)\)

Vậy phương trình đã cho vô nghiệm

b) \(\sqrt[]{1+4x}+2\sqrt[]{2-x}+2\sqrt[]{\left(1+4x\right)\left(2-x\right)}=3\)  \(\left(đkxđ:-\dfrac{1}{4}\le x\le2\right)\)

\(\)\(\Leftrightarrow\sqrt[]{1+4x}+2\sqrt[]{2-x}=3-2\sqrt[]{\left(1+4x\right)\left(2-x\right)}\)

\(\Leftrightarrow\left(\sqrt[]{1+4x}+2\sqrt[]{2-x}\right)^2=\left[3-2\sqrt[]{\left(1+4x\right)\left(2-x\right)}\right]^2\left(1\right)\)

Áp dụng Bất đẳng thức Bunhiacopxki :

\(\left(1.\sqrt[]{1+4x}+2\sqrt[]{2-x}\right)^2\le\left(1^2+2^2\right)\left(1+4x+2-x\right)=5\left(3x+3\right)\)

Áp dụng Bất đẳng thức Cauchy :

\(2\sqrt[]{\left(1+4x\right)\left(2-x\right)}\le1+4x+2-x=3x+3\)

Dấu "=" xảy ra khi và chỉ khi

\(1+4x=2-x\)

\(\Leftrightarrow x=\dfrac{1}{5}\left(thỏa.đk\right)\)

\(pt\left(1\right)\Leftrightarrow5\left(4x+3\right)=4x+3\)

\(\Leftrightarrow4\left(4x+3\right)=0\)

\(\Leftrightarrow x=-\dfrac{3}{4}\left(k.thỏa.x=\dfrac{1}{5}.vô.lý\right)\)

Vậy phương trình đã cho vô nghiệm

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 22:18

a/ ĐKXĐ: \(x\ge-1\)

\(2\sqrt{\left(\sqrt{x+1}+1\right)^2}-\sqrt{x+1}=4\)

\(\Leftrightarrow2\left(\sqrt{x+1}+1\right)-\sqrt{x+1}=4\)

\(\Leftrightarrow\sqrt{x+1}=2\)

\(\Rightarrow x=3\)

b/ ĐKXĐ: \(x\ge1\)

\(\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(2-\sqrt{x-1}\right)^2}=1\)

\(\Leftrightarrow\left|\sqrt{x-1}-1\right|+\left|2-\sqrt{x-1}\right|=1\)

Ta có \(VT\ge\left|\sqrt{x-1}-1+2-\sqrt{x-1}\right|=1\)

Nên dấu "=" xảy ra khi và chỉ khi:

\(1\le\sqrt{x-1}\le2\Rightarrow2\le x\le5\)

Vậy nghiệm của pt là \(2\le x\le5\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 22:28

c/ ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{x-1}+1\right|-\left|\sqrt{x-1}-1\right|=2\)

- Với \(\sqrt{x-1}\ge1\Rightarrow x\ge2\) ta có:

\(\sqrt{x-1}+1-\sqrt{x-1}+1=2\)

\(\Leftrightarrow2=2\) (luôn đúng)

- Với \(1\le x< 2\) ta có:

\(\sqrt{x-1}+1-1+\sqrt{x-1}=2\)

\(\Leftrightarrow\sqrt{x-1}=1\Rightarrow x=2\left(l\right)\)

Vậy nghiệm của pt là \(x\ge2\)

d/ ĐKXĐ: \(-\le x\le1\)

\(\Leftrightarrow\sqrt{5-4x^2+4\sqrt{1-x^2}}+\sqrt{5-4x^2-4\sqrt{1-x^2}}=2x+2\)

\(\Leftrightarrow\sqrt{4-4x^2+2\sqrt{4-4x^2}+1}+\sqrt{4-4x^2-2\sqrt{4-4x^2}+1}=2x+2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{4-4x^2}+1\right)^2}+\sqrt{\left(\sqrt{4-4x^2}-1\right)^2}=2x+2\)

\(\Leftrightarrow\left|\sqrt{4-4x^2}+1\right|+\left|\sqrt{4-4x^2}-1\right|=2x+2\)

TH1: \(\sqrt{4-4x^2}\ge1\Rightarrow-\frac{\sqrt{3}}{2}\le x\le\frac{\sqrt{3}}{2}\) ta có:

\(\sqrt{4-4x^2}+1+\sqrt{4-4x^2}-1=2x+2\)

\(\Leftrightarrow\sqrt{4-4x^2}=x+1\)

\(\Leftrightarrow4-4x^2=x^2+2x+1\)

\(\Leftrightarrow5x^2+2x-3=0\Rightarrow\left[{}\begin{matrix}x=-1\left(l\right)\\x=\frac{3}{5}\end{matrix}\right.\)

TH2: \(\left[{}\begin{matrix}-1\le x< -\frac{\sqrt{3}}{2}\\\frac{\sqrt{3}}{2}< x\le1\end{matrix}\right.\) ta có:

\(\sqrt{4-4x^2}+1+1-\sqrt{4-4x^2}=2x+2\)

\(\Leftrightarrow2x=0\Rightarrow x=0\left(l\right)\)

Vậy pt có nghiệm duy nhất \(x=\frac{3}{5}\)

Khách vãng lai đã xóa
Nguyễn Hoàng trung
Xem chi tiết
Lê Thị Thục Hiền
23 tháng 6 2021 lúc 12:58

a) Áp dụng bđt AM-GM có:

\(\sqrt[3]{\left(9-x\right).8.8}\le\dfrac{9-x+8+8}{3}=\dfrac{25-x}{3}\)\(\Leftrightarrow\sqrt[3]{9-x}\le\dfrac{25-x}{12}\)

\(\sqrt[3]{\left(7+x\right).8.8}\le\dfrac{7+x+8+8}{3}=\dfrac{23+x}{3}\)\(\Leftrightarrow\sqrt[3]{7+x}\le\dfrac{23+x}{12}\)

Cộng vế với vế \(\Rightarrow\sqrt[3]{9-x}+\sqrt[3]{7+x}\le4\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}9-x=8\\7+x=8\end{matrix}\right.\)\(\Rightarrow x=1\)

Vậy...

b)Đk:\(x\ge2\)

Pt \(\Leftrightarrow\left(x-1\right)^2.\left(x^2-4\right)=\left(x-2\right)^2.\left(x^2-1\right)\)

\(\Leftrightarrow\left(x-1\right)^2\left(x-2\right)\left(x+2\right)=\left(x-2\right)^2\left(x+1\right)\left(x-1\right)\)

Do \(x\ge2\Rightarrow x-1>0\)

Chia cả hai vế của pt cho x-1 ta được:

\(\left(x-1\right)\left(x-2\right)\left(x+2\right)=\left(x-2\right)^2\left(x+1\right)\)

\(\Leftrightarrow\left(x-2\right)\left[\left(x-1\right)\left(x+2\right)-\left(x-2\right)\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2+x-2-x^2+3x-2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=1\left(ktm\right)\end{matrix}\right.\)

Vậy S={2}

c)Đk:\(\left\{{}\begin{matrix}9-x^2\ge0\\x^2-1\ge0\\x-3\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-3\le x\le3\\\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\\x\ge3\end{matrix}\right.\)\(\Rightarrow x=3\)

Thay x=3 vào pt thấy thỏa mãn

Vậy S={3}

Thuy Chu
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 8 2023 lúc 19:23

1: =>x^2-x=3-x

=>x^2=3

=>x=căn 3 hoặc x=-căn 3

2: =>x^2-4x+3=x^2-4x+4 và x>=2

=>3=4(vô lý)

3: =>2|x-1|=6

=>|x-1|=3

=>x-1=3 hoặc x-1=-3

=>x=-2 hoặc x=4

4: =>|2x-3|=|x-2|

=>2x-3=x-2 hoặc 2x-3=-x+2

=>x=1 hoặc x=5/3

5: =>\(\sqrt{x+2}\left(\sqrt{x-2}+\sqrt{x+2}\right)=0\)

=>x+2=0

=>x=-2

Phuonganh Nhu
Xem chi tiết
Lấp La Lấp Lánh
23 tháng 8 2021 lúc 13:20

d) \(\sqrt{x^2-6x+9}=2\Leftrightarrow\sqrt{\left(x-3\right)^2}=2\Leftrightarrow x-3=2\Leftrightarrow x=5\)

e) đk: \(x\ge2\)\(\sqrt{x^2-3x+2}=\sqrt{x-1}\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}=\sqrt{x-1}\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x-2=1\Leftrightarrow x=3\)f) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x-3\right)^2}\Leftrightarrow2x-1=x-3\Leftrightarrow x=-2\)

Nguyễn Lê Phước Thịnh
23 tháng 8 2021 lúc 13:29

c: Ta có: \(\sqrt{x+4\sqrt{x-4}}=2\)

\(\Leftrightarrow\left|\sqrt{x-4}+2\right|=2\)

\(\Leftrightarrow x-4=0\)

hay x=4

Nguyễn Minh Trang
22 tháng 9 2021 lúc 20:16

a) \(\sqrt{x-1+2\sqrt{x-1}.1+1^2}=2;đk:x\)≥1
\(\sqrt{\left(\sqrt{x-1}\right)^2+2\sqrt{x-1}.1+1^2}=2\left(hđt-1\right)\)
\(\sqrt{\left(\sqrt{x-1}+1\right)^2=2}\)
⇔|\(\sqrt{x-1}+1\)|=2
\(\left[{}\begin{matrix}\sqrt{x+1}-1=2\\\sqrt{x+1-1}=-2\end{matrix}\right.\)\(\left[{}\begin{matrix}\sqrt{x+1}=3\\\sqrt{x+1}=-1\left(L\right)\end{matrix}\right.\)⇔x+1=9⇔x=10(TM)
→S={10}

Nguyễn Khánh Nhi
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 9 2021 lúc 14:16

\(1,\sqrt{x+2+4\sqrt{x-2}}=5\left(x\ge2\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-2}+4\right)^2}=5\\ \Leftrightarrow\sqrt{x-2}+4=5\\ \Leftrightarrow\sqrt{x-2}=1\\ \Leftrightarrow x-2=1\Leftrightarrow x=3\\ 2,\sqrt{x+3+4\sqrt{x-1}}=2\left(x\ge1\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-1}+4\right)^2}=2\\ \Leftrightarrow\sqrt{x-1}+4=2\\ \Leftrightarrow\sqrt{x-1}=-2\\ \Leftrightarrow x\in\varnothing\left(\sqrt{x-1}\ge0\right)\)

\(3,\sqrt{x+\sqrt{2x-1}}=\sqrt{2}\left(x\ge\dfrac{1}{2};x\ne1\right)\\ \Leftrightarrow x+\sqrt{2x-1}=2\\ \Leftrightarrow x-2=-\sqrt{2x-1}\\ \Leftrightarrow x^2-4x+4=2x-1\\ \Leftrightarrow x^2-6x+5=0\\ \Leftrightarrow\left(x-5\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=1\left(loại\right)\end{matrix}\right.\)

\(4,\sqrt{x-2+\sqrt{2x-5}}=3\sqrt{2}\left(x\ge\dfrac{5}{2}\right)\\ \Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}=6\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}=6\\ \Leftrightarrow\sqrt{2x-5}+1=6\\ \Leftrightarrow\sqrt{2x-5}=5\\ \Leftrightarrow2x-5=25\Leftrightarrow x=15\left(TM\right)\)

Nhan Thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 7 2021 lúc 21:44

a) ĐKXĐ: \(x\ge0\)

Ta có: \(\left(x+3\sqrt{x}+2\right)\left(x+9\sqrt{x}+18\right)=168x\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+6\right)=168x\)

\(\Leftrightarrow\left(x+6\right)^2+12\sqrt{x}\left(x+6\right)-133=0\)

\(\Leftrightarrow\left(x+6\right)^2+19\sqrt{x}\left(x+6\right)-7\sqrt{x}\left(x+6\right)-133=0\)

\(\Leftrightarrow\left(x+6\right)\left(x+19\sqrt{x}+6\right)-7\sqrt{x}\left(x+19\sqrt{x}+6\right)=0\)

\(\Leftrightarrow\left(x-7\sqrt{x}+6\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=36\end{matrix}\right.\)

Xem chi tiết
Gia Huy
3 tháng 7 2023 lúc 16:04

1

ĐK: \(x\ge1\)

Đặt \(t=\sqrt{x-1}\left(t\ge0\right)\Rightarrow x=t^2+1\)

Khi đó: 

\(x-2\sqrt{x-1}=16\)

\(\Leftrightarrow t^2-2t+1=16\\ \Leftrightarrow\left(t-1\right)^2=4^2\\ \Leftrightarrow t-1=4\\ \Leftrightarrow t=4+1=5\left(tm\right)\)

\(\Leftrightarrow\sqrt{x-1}=5\)

\(\Leftrightarrow x-1=5^2=25\\ \Leftrightarrow x=25+1=26\left(tm\right)\)

Vậy PT có nghiệm duy nhất x = 26.

2 ĐK: \(3\le x\le1\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{1-x}=0\\\sqrt{x-3}=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Từ điều kiện và bài giải ta kết luận PT vô nghiệm.

3 ĐK: \(x\ge4\)

\(\Leftrightarrow\sqrt{x-4}=7-2=5\\ \Leftrightarrow x-4=5^2=25\\ \Leftrightarrow x=25+4=29\left(tm\right)\)

Vậy PT có nghiệm duy nhất x = 29.

4

ĐK: \(x\ge1\)

Đặt \(t=\sqrt{x-1}\left(t\ge0\right)\Rightarrow x=t^2+1\)

Khi đó:

\(x-\sqrt{x-2\sqrt{x-1}}=0\\ \Leftrightarrow t^2+1-\sqrt{t^2-2t+1}=0\\ \Leftrightarrow t^2+1-\sqrt{\left(t-1\right)^2}=0\\ \Leftrightarrow t^2+1-\left|t-1\right|=0\left(1\right)\)

Trường hợp 1:

Với \(0\le t< 1\) thì:

\(\left(1\right)\Leftrightarrow t^2+1-\left(1-t\right)=0\\ \Leftrightarrow t^2+t=0\\ \Leftrightarrow t\left(t+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=0\Rightarrow\sqrt{x-1}=0\Rightarrow x=1\left(nhận\right)\\t=-1\left(loại\right)\end{matrix}\right.\)

Trường hợp 2:

Với \(t\ge1\) thì:

\(\left(1\right)\Leftrightarrow t^2+1-\left(t-1\right)=0\\ \Leftrightarrow t^2-t+2=0\)

\(\Delta=\left(-1\right)^2-4.2=-7< 0\)

=> Loại trường hợp 2.

Vậy PT có nghiệm duy nhất x = 1.

5

ĐK: \(x\ge2\)

Đặt \(\sqrt{x-2}=t\left(t\ge0\right)\Rightarrow x=t^2+2\)

Khi đó:

\(\sqrt{x-2}-\sqrt{x^2-2x}=0\\ \Leftrightarrow\sqrt{x-2}-\sqrt{x}.\sqrt{x-2}=0\\ \Leftrightarrow\sqrt{t^2+2-2}-\sqrt{t^2+2}.\sqrt{t^2+2-2}=0\\ \Leftrightarrow\sqrt{t^2}-\sqrt{t^2+2}.\sqrt{t^2}=0\\ \Leftrightarrow t-\sqrt{t^2+2}.t=0\\ \Leftrightarrow t\left(1-\sqrt{t^2+2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=0\Rightarrow\sqrt{x-2}=0\Rightarrow x=2\left(tm\right)\\\sqrt{t^2+2}=1\Rightarrow t^2+2=1\Rightarrow t^2=-1\left(loại\right)\end{matrix}\right.\)

Vậy phương trình có nghiệm duy nhất x = 2.

6 Không có ĐK vì đưa về tổng bình lên luôn \(\ge0\)

\(\Leftrightarrow\sqrt{\sqrt{2}^2-2.\sqrt{2}.\sqrt{1}+\sqrt{1}^2}-\sqrt{x^2+2x.\sqrt{2}+\sqrt{2}^2}=0\\ \Leftrightarrow\sqrt{\left(\sqrt{2}-\sqrt{1}\right)^2}-\sqrt{\left(x+\sqrt{2}\right)^2}=0\\ \Leftrightarrow\left|\sqrt{2}-\sqrt{1}\right|-\left|x+\sqrt{2}\right|=0\\ \Leftrightarrow\sqrt{2}-1-\left|x+\sqrt{2}\right|=0\)

Trường hợp 1:

Với \(x\ge-\sqrt{2}\) thì:

\(\left(1\right)\Leftrightarrow\sqrt{2}-1-\left(x+\sqrt{2}\right)=0\\ \Leftrightarrow\sqrt{2}-1-x-\sqrt{2}=0\\ \Leftrightarrow-1-x=0\\ \Leftrightarrow x=-1\left(tm\right)\)

Với \(x< -\sqrt{2}\) thì:

\(\left(1\right)\Leftrightarrow\sqrt{2}-1--\left(x+\sqrt{2}\right)=0\\ \Leftrightarrow\sqrt{2}-1+x+\sqrt{2}=0\\ \Leftrightarrow2\sqrt{2}+1+x=0\\ \Leftrightarrow x=-1-2\sqrt{2}\left(tm\right)\)

Vậy phương trình có 2 nghiệm \(x=-1\) hoặc \(x=-1-2\sqrt{2}\)

Mai Tiến Đỗ
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 12 2020 lúc 16:58

a.

ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x-1\right)\left(x^3+x^2+x+1\right)}\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x^3+x^2+x+1}-1\right)-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x^3+x^2+x+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^3+x^2+x=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
13 tháng 12 2020 lúc 16:58

b.

ĐKXĐ: \(x\ge-1\)

\(x^2-6x+9+x+1-4\sqrt{x+1}+4=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\\sqrt{x+1}-2=0\end{matrix}\right.\)

\(\Leftrightarrow x=3\)

c.

ĐKXĐ: \(-2\le x\le\dfrac{4}{5}\)

\(VT=2x+3\sqrt{4-5x}+1.\sqrt{x+2}\)

\(VT\le2x+\dfrac{1}{2}\left(9+4-5x\right)+\dfrac{1}{2}\left(1+x+2\right)=8\)

Dấu "=" xảy ra khi và chỉ khi \(x=-1\)

Nguyễn Việt Lâm
13 tháng 12 2020 lúc 16:58

d.

ĐKXĐ: \(x>1\)

\(\Leftrightarrow\dfrac{x^2+x+1-1}{\sqrt{x^2+x+1}}=\dfrac{1-\left(x-1\right)}{\sqrt{x-1}}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a>0\\\sqrt{x-1}=b>0\end{matrix}\right.\)

\(\Rightarrow\dfrac{a^2-1}{a}=\dfrac{1-b^2}{b}\)

\(\Leftrightarrow a-\dfrac{1}{a}=\dfrac{1}{b}-b\)

\(\Leftrightarrow a+b-\dfrac{a+b}{ab}=0\)

\(\Leftrightarrow\left(a+b\right)\left(1-\dfrac{1}{ab}\right)=0\)

\(\Leftrightarrow1-\dfrac{1}{ab}=0\)

\(\Leftrightarrow ab=1\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=1\)

\(\Leftrightarrow x^3-1=1\)

\(\Leftrightarrow x=\sqrt[3]{2}\)