Tìm MIN của các biểu thức
A= x^4+3x^2+2
B= (x^4+5)2
Tìm x
(4x+3)2+(3x-4)2+(2+5x)(2-5x)=x
Thu gọn biểu thức
a)(x-3)(x+3)-(x-3)2
b)(3x-1)2+2(3x-1)(2x+1)+(2x+1)2
giúp mình với ;-;
1) \(\Rightarrow16x^2+24x+9+9x^2-24x+16+4-25x^2=x\)
\(\Rightarrow x=29\)
2)
a) \(=x^2-9-x^2+6x-9=6x-18\)
b) \(=\left(3x-1+2x+1\right)^2=\left(5x\right)^2=25x^2\)
1. Thu gọn biểu thức
a) (x-3) ² + 3x (x-5)
b) (3x+2) ² - (x+3) (x-3)
2. Tìm x biết a) (x+4) ² - (x+2) (x-2)=5
b) (3x-1) ² _ (2x-3) (4x+1)= 5+x ²
1.
a) \(=x^2-6x+9+3x^2-15x=4x^2-21x+9\)
b) \(=9x^2+12x+4-x^2+9=8x^2+12x+13\)
2.
a) \(\Leftrightarrow x^2+8x+16-x^2+4-5=0\\ \Leftrightarrow8x=-15\\ \Leftrightarrow x=-\dfrac{15}{8}\)
b) \(\Leftrightarrow9x^2-6x+1-8x^2+12x-2x+3-5-x^2=0\\ \Leftrightarrow4x=1\\ \Leftrightarrow x=\dfrac{1}{4}\)
1,a,=x2−6x+8+3x2−15x=4x2−21x+8b,=9x2+12x+4−x2+9=8x2+12x+132,a,⇔x2+8x+16−x2+4=5⇔8x=−15⇔x=−158b,⇔9x2−6x+1−8x2−2x+12x+3−x2=5⇔4x=1⇔x=14
thu gọn biểu thức
a) (6x-2)2+4(3x-1)(2+y)+(y+2)2-(6x+y)2
b)5(2x-1)2+2(x-1)(x+3)-2(5-2x)2-2x(7x+12)
c)2(5x-1)(x2-5x+1)+(x2-5x+1)2+(5x-1)2-(x2-1)(x2+1)
d)(x2+4)2-(x2+4)(x2-4)(x2+16)-8(x-4)(x+4)
`#3107`
`a)`
`(6x - 2)^2 + 4(3x - 1)(2 + y) + (y + 2)^2 - (6x + y)^2`
`= [(6x - 2)^2 - (6x + y)^2] + 4(3x - 1)(2 + y) + (2 + y)^2`
`= (6x - 2 - 6x - y)(6x -2 + 6x + y) + (2 + y)*[ 4(3x - 1) + 2 + y]`
`= (2 - y)(12x + y - 2) + (2 + y)*(12x - 4 + 2 + y)`
`= (2 - y)(12x + y - 2) + (2 + y)*(12x + y - 2)`
`= (12x + y - 2)(2 - y + 2 + y)`
`= (12x + y - 2)*4`
`= 48x + 4y - 8`
`b)`
\(5(2x-1)^2+2(x-1)(x+3)-2(5-2x)^2-2x(7x+12)\)
`= 5(4x^2 - 4x + 1) + 2(x^2 + 2x - 3) - 2(25 - 20x + 4x^2) - 14x^2 - 24x`
`= 20x^2 - 20x + 5 + 2x^2 + 4x - 6 - 50 + 40x - 8x^2 - 14x^2 - 24x`
`= - 51`
`c)`
\(2(5x-1)(x^2-5x+1)+(x^2-5x+1)^2+(5x-1)^2-(x^2-1)(x^2+1)\)
`= [ 2(5x - 1) + x^2 - 5x + 1] * (x^2 - 5x + 1) + (5x - 1)^2 - [ (x^2)^2 - 1]`
`= (10x - 2 + x^2 - 5x + 1) * (x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`
`= (x^2 + 5x - 1)(x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`
`= x^4 - (5x - 1)^2 + (5x - 1)^2 - x^4 + 1`
`= 1`
`d)`
\((x^2+4)^2-(x^2+4)(x^2-4)(x^2+16)-8(x-4)(x+4)\)
`= (x^2 + 4)*[x^2 + 4 - (x^2 - 4)(x^2 + 16)] - 8(x^2 - 16)`
`= (x^2 + 4)(x^4 + 12x^2 - 64) - 8x^2 + 128`
`= x^6 + 16x^4 - 16x^2 - 256 - 8x^2 + 128`
`= x^6 + 16x^4 - 24x^2 - 128`
Tìm giá trị nhỏ nhất của biểu thức
a) \(A=\sqrt{x-2}+\sqrt{4-x}\)
b) \(y=\dfrac{4x^4-3x^2+9}{x^2},x\ne0\)
c) \(P=\dfrac{x}{4}+\dfrac{1}{x-1}\) với x>1
\(A=\sqrt{x-2}+\sqrt{4-x}\ge\sqrt{x-2+4-x}=\sqrt{2}\)
\(A_{min}=\sqrt{2}\) khi \(\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
\(y=4x^2+\dfrac{9}{x^2}-3\ge2\sqrt{\dfrac{36x^2}{x^2}}-3=9\)
\(y_{min}=9\) khi \(x^2=\dfrac{3}{2}\)
\(P=\dfrac{x-1}{4}+\dfrac{1}{x-1}+\dfrac{1}{4}\ge2\sqrt{\dfrac{x-1}{4\left(x-1\right)}}+\dfrac{1}{4}=\dfrac{5}{4}\)
\(P_{min}=\dfrac{5}{4}\) khi \(x=\dfrac{3}{2}\)
Cho các biểu thức
A = \(\dfrac{1}{x+2}-\dfrac{2x}{4-x^2}+\dfrac{3}{x-2}\) và B = \(\dfrac{x+2}{3x+2}\)với x ≠ 2; x ≠ -2; x ≠ -\(\dfrac{2}{3}\)
a. Tính giá trị của A biết \(3x^2+8x+4=0\)
b. Rút gọn B
\(a,\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\left(l\right)\\x=-2\left(l\right)\end{matrix}\right.\Leftrightarrow x\in\varnothing\Leftrightarrow A\in\varnothing\\ b,\text{ý bạn là rút gọn A hả?}\\ A=\dfrac{x-2+2x+3x+6}{\left(x-2\right)\left(x+2\right)}=\dfrac{6x+4}{\left(x-2\right)\left(x+2\right)}\)
Tìm điều kiện xác định của các biểu thức
a. \(\sqrt{3x-6}\)
b. \(\sqrt{-3x+9}\)
c. \(\sqrt{\dfrac{4}{2x-1}}\)
d. \(\sqrt{\dfrac{-5}{-3x+2}}\)
e. \(\sqrt{\dfrac{5x-3}{-4}}\)
a)ĐK:`3x-6>=0`
`<=>3x>=6<=>x>=2`
b)ĐK:`-3x+9>=0`
`<=>-3x>=-9`
`<=>x<=3`
c)ĐK:`(-5)/(-3x+2)>=0(x ne -2/3)`
Vì `-5<0`
`<=>-3x+2<0`
`<=>-3x<-2`
`<=>x>2/3`
e)ĐK:`(5x-3)/(-4)>=0`
MÀ `-4<0`
`<=>5x-3<=0`
`<=>5x<=3`
`<=>x<=3/5`
1) rút gọn biểu thức
a) (x2- 5)-(x+7)(x-7)
b)(2x+3y)2+(3x-2y)2-2(2x+3y)(2x+3y93x-2y)
2) tìm giá trị biểu thức
A= x3+3x2+3x+1 tại x = 99
mn giúp mình lẹ đi đang gấp
Tìm nghiệm của đa thức
A, A(x) = 5x^2 - (5x-1) + 2
B, B(x) = 4x^2 - 3x + 7
C, C(x) = 5x^2 -11x + 6
Giúp với ạaaa
\(A\left(x\right)=5x^2-5x+3=5\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0,\forall x\)
⇒ pt vô nghiệm
\(B\left(x\right)=4x^2-3x+7=4\left(x-\dfrac{3}{8}\right)^2+\dfrac{103}{16}>0,\forall x\)
⇒ pt vô nghiệm
\(C\left(x\right)=5x^2-11x+6=\left(5x^2-5x\right)-\left(6x-6\right)\)
\(=5x\left(x-1\right)-6\left(x-1\right)=\left(5x-6\right)\left(x-1\right)\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\\x=1\end{matrix}\right.\)
Vậy ...
a, Ta có :
\(A\left(x\right)=5x^2-5x+1+2=0\Leftrightarrow5x^2-6x+3=0\)
\(\Leftrightarrow5\left(x^2-\dfrac{2.3}{5}+\dfrac{9}{25}-\dfrac{9}{25}\right)+3=0\Leftrightarrow5\left(x-\dfrac{3}{5}\right)^2+\dfrac{6}{5}=0\)( vô lí )
vậy đa thức ko có nghiệm
b, \(B\left(x\right)=4x^2-3x+7=0\Leftrightarrow4\left(x^2-\dfrac{2.3}{8}+\dfrac{9}{64}-\dfrac{9}{64}\right)+7=0\)
\(\Leftrightarrow4\left(x-\dfrac{3}{8}\right)^2+\dfrac{103}{64}=0\)( vô lí )
Vậy đa thức ko có nghiệm
c, \(C\left(x\right)=5x^2-11x+6=0\Leftrightarrow5x^2-6x-5x+6=0\)
\(\Leftrightarrow5x\left(x-1\right)-6\left(x-1\right)=0\Leftrightarrow\left(5x-6\right)\left(x-1\right)=0\Leftrightarrow x=\dfrac{6}{5};x=1\)
bài 1 rút gọn biểu thức
a) (2x-5)^2-4x(x+3)
b) (x-2)^3 -6(x+4)(x-4)-(x-2)(x^2+2x+4)
c)(x-1)^2-2(x-1)(x+2)+(x+2)^2+5(2x-3)
bài 2 rút gọn biểu thức
a)(2-3x)^2-5x(x-4)+4(x-1)
b)(3-x)(x^2+3x+9)+(x-3)^3
c)(x-4)^2(x+4)-(x-4)(x+4)^2+3(x^2-16)
1:
a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)
\(=4x^2-20x+25-4x^2-12x\)
=-32x+25
b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)
\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)
c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)
\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)
\(=\left(-3\right)^2+5\left(2x-3\right)\)
\(=9+10x-15=10x-6\)
2:
a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)
\(=9x^2-12x+4-5x^2+20x+4x-4\)
\(=4x^2+12x\)
b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)
\(=27-x^3+x^3-9x^2+27x-27\)
\(=-9x^2+27x\)
c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)
\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)
\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)
\(=-5\left(x^2-16\right)=-5x^2+80\)