Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lý Ngọc Mai
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 12 2021 lúc 20:59

\(a,=\dfrac{x^3-\left(x-1\right)\left(x^2+x+1\right)}{1-x}=\dfrac{x^3-x^3+1}{1-x}=\dfrac{1}{1-x}\\ b,=\dfrac{2x+x^2+3x+2+2-x}{\left(x+2\right)^2}=\dfrac{\left(x+2\right)^2}{\left(x+2\right)^2}=1\)

Hâhaaaaaa
Xem chi tiết
Hâhaaaaaa
11 tháng 12 2021 lúc 23:07

mình có đáp án rồi ạ.

Sửu Phạm
Xem chi tiết
ILoveMath
19 tháng 1 2022 lúc 20:51

Câu 1:

\(\left(x-2\right)\left(x^2+2x+4\right)+25x=x\left(x+5\right)\left(x-5\right)+8\)

\(\Leftrightarrow x^3-8+25x=x\left(x^2-25\right)+8\)

\(\Leftrightarrow x^3-8+25x=x^3-25x+8\)

\(\Leftrightarrow x^3-8+25x-x^3+25x-8=0\)

\(\Leftrightarrow50x-16=0\)

\(\Leftrightarrow50x=16\)

\(\Leftrightarrow x=\dfrac{8}{25}\)

Bacdau)
19 tháng 1 2022 lúc 21:21

Câu 2 :

\(\dfrac{x+5}{4}+\dfrac{3+2x}{3}=\dfrac{6x-1}{3}-\dfrac{1-2x}{12}\)

<=> \(\dfrac{3\left(x+5\right)}{12}+\dfrac{4\left(3+2x\right)}{12}=\dfrac{4\left(6x-1\right)}{12}-\dfrac{1-2x}{12}\)

<=>\(\dfrac{3x+15+12+8x}{12}=\dfrac{24x-4-1+2x}{12}\)

<=> 3x + 15 + 12 + 8x = 24x - 4 - 1 +2x

<=> 11x+27 = 26x -5

<=> ( 26x - 5 ) - ( 11x + 27 ) = 0

<=> 15x - 32 = 0

<=> 15x = 32

<=> x = \(\dfrac{32}{15}\)

Hồ Lê Thiên Đức
19 tháng 1 2022 lúc 21:33

Câu 3:

x - 4/3 - 3x - 1/12 = 3x + 1/4 + 9x - 2/8

<=> 4x - 16 - 3x + 1/12 = 6x + 2 + 9x - 2/8

<=> x - 15/12 = 15x/8

<=> 8x - 120 = 180x

<=> 120 = -172x <=> x = -172/120 = -43/30

Đỗ Bá Hùng
Xem chi tiết
Phong
12 tháng 8 2023 lúc 10:36

1) \(\sqrt{4+x}=2-x\) (ĐK: \(x\ge-4\))

\(\Leftrightarrow4+x=\left(2-x\right)^2\)

\(\Leftrightarrow4+x=4-4x+x^2\)

\(\Leftrightarrow x^2-4x-x+4-4=0\)

\(\Leftrightarrow x^2-5x=0\)

\(\Leftrightarrow x\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)

Vậy: \(S=\left\{0;5\right\}\)

Phong
12 tháng 8 2023 lúc 10:43

2) 

a) ĐKXĐ: \(a>0,a\ne1\)

\(A=\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}+1}{a+\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a}\)

\(A=\left[\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right]\cdot\dfrac{a}{\sqrt{a}+1}\)

\(A=\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\cdot\dfrac{a}{\sqrt{a}+1}\)

\(A=\dfrac{a-1}{\sqrt{a}}\cdot\dfrac{a}{\sqrt{a}+1}\)

\(A=\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}}\cdot\dfrac{\sqrt{a}\cdot\sqrt{a}}{\sqrt{a}+1}\)

\(A=\sqrt{a}\left(\sqrt{a}-1\right)\)

\(A=a-\sqrt{a}\)

b) Ta có:

\(A=a-\sqrt{a}\)

\(A=\left(\sqrt{a}\right)^2-2\cdot\dfrac{1}{2}\cdot\sqrt{a}+\dfrac{1}{4}-\dfrac{1}{4}\)

\(A=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)

Mà: \(\left(\sqrt{a}-\dfrac{1}{2}\right)^2\ge0\) nên \(A=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu "=" xảy ra khi:

\(\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}=-\dfrac{1}{4}\)

\(\Leftrightarrow a=\dfrac{1}{4}\)

Vậy: \(A_{min}=-\dfrac{1}{4}\)khi \(a=\dfrac{1}{4}\)

Thảo Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 6 2023 lúc 22:33

a: ĐKXĐ: x<>0; x<>-1

PT =>x+1-2x=3

=>1-x=3

=>x=-2(nhận)

b: Sửa đề: \(\dfrac{1}{2x-3}-\dfrac{3}{x\left(2x-3\right)}=\dfrac{5}{x}\)

=>x-3=5(2x-3)

=>10x-15=x-3

=>9x=12

=>x=4/3(nhận)

c: ĐKXĐ: x<>0; x<>2

PT =>x(x+2)-x+2=2

=>x^2+2x-x=0

=>x(x+1)=0

=>x=-1

Thảo Nguyên
Xem chi tiết
Hồng Phúc
5 tháng 3 2021 lúc 21:27

2.

b, \(-4< \dfrac{2x^2+mx-4}{-x^2+x-1}< 6\)

\(\Leftrightarrow\left\{{}\begin{matrix}-4< \dfrac{2x^2+mx-4}{-x^2+x-1}\left(1\right)\\\dfrac{2x^2+mx-4}{-x^2+x-1}< 6\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow4\left(x^2-x+1\right)>2x^2+mx-4\)

\(\Leftrightarrow2x^2-\left(m+4\right)x+8>0\)

Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2+8m-48< 0\Leftrightarrow-12< m< 4\)

\(\left(2\right)\Leftrightarrow-6\left(x^2-x+1\right)< 2x^2+mx-4\)

\(\Leftrightarrow8x^2+\left(m-6\right)x+2>0\)

Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2-12m-28< 0\Leftrightarrow-2< x< 14\)

Vậy \(m\in\left(-2;4\right)\)

Hồng Phúc
5 tháng 3 2021 lúc 20:59

2.

a, Yêu cầu bài toán thỏa mãn khi phương trình \(\left(m-4\right)x^2+\left(1+m\right)x+2m-1>0\) có nghiệm đúng với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m-4>0\\\Delta=m^2+2m+1-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow m>5\)

Hồng Phúc
7 tháng 3 2021 lúc 11:19

1.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}m-4< 0\\\Delta=-7m^2+38m-15< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m>5\\m< \dfrac{3}{7}\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow m< \dfrac{3}{7}\)

Sengoku
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 3 2021 lúc 12:06

Hiển nhiên là cách đầu sai rồi em

Khi đến \(\lim x^2\left(1-1\right)=+\infty.0\) là 1 dạng vô định khác, đâu thể kết luận nó bằng 0 được

Lý Ngọc Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 10 2021 lúc 21:22

a: \(A=x^3+3x^2-5x-15+x^2-x^3+4x-4x^2\)

\(=-x-15\)

\(=-\left(-1\right)-15=1-15=-14\)

Anh Thư Bùi
Xem chi tiết
Trần Thị Như Quỳnh 6/4
6 tháng 4 2022 lúc 19:13

\(=\dfrac{5}{6}+\dfrac{1}{4}=\dfrac{13}{12}\)

Hoàng Việt Bách
6 tháng 4 2022 lúc 19:13

\(\dfrac{13}{12}\)

Chuu
6 tháng 4 2022 lúc 19:14

5/6+ 1/4 = 13/12