Chứng minh hằng đẳng thức sau:
\(sin^4a+cos^4a-sin^6a-cos^6a=sin^2a.cos^2a\)
CM các đẳng thức LG sau:
1)\(\left(cos^4a+sin^4a\right)-2\left(cos^6a+sin^6a\right)=1\)
2) \(\frac{sin^2a+cos^2a}{1+2sina.cosa}=\frac{tana-1}{tana+1}\)
3) \(sin^4a+cos^4a-sin^6a-cos^6a=sin^2a.cos^2a\)
4) \(\frac{cosa}{1+sina}+tana=\frac{1}{cosa}\)
5) \(\frac{tana}{a-tan^2a}.\frac{cot^2a-1}{cota}=1\)
cái câu 1 kia lạ thật, phần phía trc có ngoặc thì phải nhân vs hạng tử nào đó chứ nhỉ? Và mk tính ra kq là \(-\cos^22\alpha\)
\(VT=\cos^4\alpha+\sin^4\alpha-2\cos^6\alpha-2\sin^6\alpha\)
\(=\sin^4\alpha\left(1-2\sin^2\alpha\right)-\cos^4\alpha\left(2\cos^2\alpha-1\right)\)
\(=\sin^4\alpha.\cos2\alpha-\cos^4\alpha.\cos2\alpha\)
\(=\cos2\alpha\left(\sin^2\alpha.\sin^2\alpha-\cos^4\alpha\right)\)
\(=\cos2\alpha.\left[\left(1-\cos^2\alpha\right)^2-\cos^4\alpha\right]\)
\(=\cos2\alpha.\left(1-2\cos^2\alpha\right)\)
\(=-\cos^22\alpha\)
2/ \(VT=\frac{1-\cos^2\alpha+\cos^2\alpha}{1+\sin2\alpha}=\frac{1}{1+\sin2\alpha}\)
\(VP=\frac{\frac{\sin\alpha}{\cos\alpha}-1}{\frac{\sin\alpha}{\cos\alpha}+1}=\frac{\frac{\sin\alpha-\cos\alpha}{\cos\alpha}}{\frac{\sin\alpha+\cos\alpha}{\cos\alpha}}=\frac{\sin\alpha-\cos\alpha}{\sin\alpha+\cos\alpha}\)
hmm, câu 2 có vẻ vô lí, bn thử nhân chéo lên mà xem, nó ko ra KQ = nhau đâu
1)
\((\cos^4a+\sin ^4a)-2(\cos^6a+\sin ^6a)=(\cos ^4a+\sin ^4a)-2(\cos ^2a+\sin ^2a)(\cos ^4a-\cos ^2a\sin ^2a+\sin ^4a)\)
\(=(\cos ^4a+\sin ^4a)-2(\cos ^4a-\cos ^2a\sin ^2a+\sin ^4a)\)
\(=-(\cos ^4a-2\sin ^2a\cos ^2a+\sin ^4a)=-(\cos ^2a-\sin ^2a)^2=-\cos ^22a\)
(bạn xem lại đề. Nếu thay $(\cos ^4a+\sin ^4a)$ thành $3(\cos ^4a+\sin ^4a)$ thì kết quả thu được là $(\cos ^2a+\sin ^2a)^2=1$ như yêu cầu)
2) Sửa đề:
\(\frac{\sin ^2a-\cos ^2a}{1+2\sin a\cos a}=\frac{(\sin a-\cos a)(\sin a+\cos a)}{\sin ^2a+\cos ^2a+2\sin a\cos a}=\frac{(\sin a-\cos a)(\sin a+\cos a)}{(\sin a+\cos a)^2}\)
\(=\frac{\sin a-\cos a}{\sin a+\cos a}=\frac{\frac{\sin a}{\cos a}-1}{\frac{\sin a}{\cos a}+1}=\frac{\tan a-1}{\tan a+1}\)
Bạn lưu ý viết đề bài chuẩn hơn.
3)
\(\sin ^4a+\cos ^4a-\sin ^6a-\cos ^6a=\sin ^4a+\cos ^4a-[(\sin ^2a)^3+(\cos ^2a)^3]\)
\(=\sin ^4a+\cos ^4a-(\sin ^2a+\cos ^2a)(\sin ^4a-\sin ^2a\cos ^2a+\cos ^4a)\)
\(=\sin ^4a+\cos ^4a-(\sin ^4a-\sin ^2a\cos ^2a+\cos ^4a)\)
\(=\sin ^2a\cos ^2a\) (đpcm)
4)
\(\frac{\cos a}{1+\sin a}+\tan a=\frac{\cos a}{1+\sin a}+\frac{\sin a}{\cos a}=\frac{\cos ^2a+\sin^2a+\sin a}{\cos a(1+\sin a)}=\frac{1+\sin a}{\cos a(1+\sin a)}=\frac{1}{\cos a}\)
5)
\(\frac{\tan a}{1-\tan ^2a}.\frac{\cot ^2a-1}{\cot a}=\frac{\tan a}{(tan a\cot a)^2-\tan ^2a}.\frac{\cot ^2a-1}{\cot a}\)
\(=\frac{\tan a}{\tan ^2a(\cot ^2a-1)}.\frac{\cot ^2a-1}{\cot a}=\frac{1}{\tan a\cot a}=\frac{1}{1}=1\)
-----------------------------------
Mấu chốt của các bài này là bạn sử dụng 2 công thức sau:
1. \(\sin ^2x+\cos^2x=1\)
2. \(\tan x.\cot x=1\)
Cm biểu thức sau ko phụ thuộc vào a
A = \(2\left(sin^6a+cos^6a\right)-3\left(sin^4a+4sin^2a\right)\)
Đề bài không sai, biểu thức vẫn phụ thuộc A
Phản ví dụ: với \(a=0\Rightarrow A=2\)
Với \(a=\dfrac{\pi}{2}\Rightarrow A=-13\)
Rõ ràng \(2\ne-13\)
Biểu thức đúng:
\(A=2\left(sin^6a+cos^6a\right)-3\left(sin^4a+cos^4a\right)\)
chứng minh
a) \(\frac{sin^2a+2cos^2a-1}{cot^2a}=sin^2a\)
b) \(\frac{1-sin^2a.cos^2a}{cos^2a}-cos^2a=tan^2a\)
c) \(\frac{sin^2a-tan^2a}{cos^2a-cot^2a}=tan^6a\)
Lời giải:
a)
\(\frac{\sin ^2a+2\cos ^2a-1}{\cot ^2a}=\frac{(\sin ^2a+\cos ^2a)+\cos ^2a-1}{\cot ^2a}=\frac{1+\cos ^2a-1}{\cot ^2a}=\frac{\cos ^2a}{\cot ^2a}=\frac{\cos ^2a}{(\frac{\cos a}{\sin a})^2}=\sin ^2a\)
b)
\(\frac{1-\sin ^2a\cos ^2a}{\cos ^2a}-\cos ^2a=\frac{1}{\cos ^2a}-\sin ^2a-\cos ^2a\)
\(=\frac{\sin ^2a+\cos ^2a}{\cos ^2a}-(\sin ^2a+\cos ^2a)=\tan ^2a+1-1=\tan ^2a\)
c)
\(\frac{\sin ^2a-\tan ^2a}{\cos ^2a-\cot ^2a}=\frac{\sin ^2a-\frac{\sin ^2a}{\cos ^2a}}{\cos ^2a-\frac{\cos ^2a}{\sin ^2a}}=\frac{\sin ^4a(\cos ^2a-1)}{\cos ^4a(\sin ^2a-1)}\)
\(=\frac{\sin ^4a(-\sin ^2a)}{\cos ^4a(-\cos ^2a)}=\frac{\sin ^6a}{\cos ^6a}=\tan ^6a\)
Cho 0<a<90.CM các hệ sau
a)\(\frac{sin^2a-cos^2a+cos^4a}{cos^2a-sin^2a+sin^4a}=tan^4a\)
b)\(\frac{1-4sin^2a.cos^2a}{\left(sina+cosa\right)^2}=\left(sina-cosa\right)^2\)
Chứng minh (sin^2a-cos^2a+cos^4a) : (cos^2a-sin^2a+sin^4a) = tan^4a
Chứng minh:
\(a,\frac{cosa}{1+sina}+tana=\frac{1}{cosa}\)
\(b,\frac{1+2sina.cosa}{sin^2a-cos^2a}=\frac{tana+1}{tana-1}\)
c,\(sin^6a+cos^6a=1-3sin^2a.cos^2a\)
d,\(sin^2a-tan^2a=tan^6a\left(cos^2a-cot^2a\right)\)
e.\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=tan^3a+cot^3a\)
\(\frac{cosa}{1+sina}+\frac{sina}{cosa}=\frac{cos^2a+sina\left(1+sina\right)}{cosa\left(1+sina\right)}=\frac{1+sina}{cosa\left(1+sina\right)}=\frac{1}{cosa}\)
\(\frac{sin^2a+cos^2a+2sina.cosa}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina+cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina+cosa}{sina-cosa}=\frac{\frac{sina}{cosa}+1}{\frac{sina}{cosa}-1}=\frac{tana+1}{tana-1}\)
\(\left(sin^2a\right)^3+\left(cos^2a\right)^3=\left(sin^2a+cos^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)\)
\(=1-3sin^2a.cos^2a\)
\(sin^2a-tan^2a=tan^4a\left(\frac{sin^2a}{tan^4a}-\frac{1}{tan^2a}\right)=tan^4a\left(sin^2a.\frac{cos^2a}{sin^2a}-\frac{1}{tan^2a}\right)\)
\(=tan^4a\left(cos^2a-cot^2a\right)\) bạn ghi sai đề câu này
\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=tan^3a\left(1+cot^2a\right)-\frac{1}{sina.cosa}+cot^3a\left(1+tan^2a\right)\)
\(=tan^3a+tana-\frac{1}{sina.cosa}+cot^3a+cota\)
\(=tan^3a+cot^3a+\frac{sina}{cosa}+\frac{cosa}{sina}-\frac{1}{sina.cosa}\)
\(=tan^3a+cot^3a+\frac{sin^2a+cos^2a-1}{sina.cosa}=tan^3a+cot^3a\)
Cho a thỏa mãn \(cos4a=\dfrac{1}{4}\)
Tính \(sin^4a+cos^4a\) và \(sin^6a+cos^6a\)
Để tính giá trị của sin^4(a) + cos^4(a), ta sử dụng công thức mở rộng (a + b)^2 = a^2 + 2ab + b^2. Áp dụng công thức này cho sin^2(a) và cos^2(a), ta có: sin^4(a) + cos^4(a) = (sin^2(a) + cos^2( a))^2 - 2sin^2(a)cos^2(a) Vì theo công thức lượng giác cơ bản, sin^2(a) + cos^2(a) = 1, từ đó ta có: sin^ 4(a) + cos^4(a) = 1 - 2sin^2(a)cos^2(a) Tuy nhiên, trong bài toán này, ta biết cos(4a) = 1/4. Sử dụng công thức lượng giác: cos(4a) = cos^2(2a) - sin^2(2a) = 1/4 Ta biến đổi biểu thức này để tìm giá trị của sin^2(2a)cos^2( 2a): cos^2(2a) - sin^2(2a) = 1/4 cos^2(2a) - (1 - cos^2(2a)) = 1/4 2cos^2(2a) - 1 = 1/4 cos^2(2a) = 5/8 Thay giá trị này vào biểu thức trước đó: sin^4(a) + cos^4(a) = 1 - 2sin^2(a)cos^2(a) = 1 - 2sin ^2(a)(5/8) = 1 - 5/4sin^2 (a) Tiếp theo, để tính giá trị của sin^6(a) + cos^6(a), ta nhận thấy rằng (sin^2(a))^3 + (cos^2(a))^3 tương đương với công thức mở rộng (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3. Thay a = sin^2(a) và b = cos^2(a), ta có: (sin^2(a))^3 + (cos^2(a))^3 = (sin^2(a) ) + cos^2(a))(sin^4(a) - sin^2(a)cos^2(a) + cos^4(a)) = (sin^2(a) + cos^2 ( a))(1 - 5/4sin^2(a)) Vì sin^2(a) + cos^2(a) = 1 nên ta có: (sin^2(a))^3 + (cos^2 (a))^3 = 1 - 5/4sin^2(a) Do đó, giá trị của sin^6(a) + cos^6(a) là 1 - 5/4sin^2(a). Tóm lại, giá trị của sin^4(a) + cos^4(a) là 1 - 5/4sin^2(a) và giá trị của sin^6(a) + cos^6(a) là 1 - 5/4sin^2(a).
\(A=2\cos^4a-\sin^4a+\sin^2a.\cos^2a+3\sin^2a\)
Chứng minh các biểu thức sau ko phụ thuộc anpha(MỌI NGƯỜI CHỨNG MINH HỘ MÌNH VỚI)
\(A=2\cos^4\alpha-\sin^4\alpha+\sin^2\alpha.\cos^2\alpha+3\sin^4\alpha+3\cos^2\alpha.\sin^2\alpha\)
\(A=2\sin^4\alpha+2\cos^4\alpha+4\sin^2\alpha.\cos^2\alpha\)
\(A=2\left[\left(\sin^2\alpha+\cos^2\alpha\right)^2-2\sin^2\alpha.\cos^2\alpha\right]+4\cos^2\alpha\sin^2\alpha=2\)
A = 2(1 - sin2α)2 - sin4α + sin2α (1-sin2α) + 3sin2α
=2 - 4sin2α + 2sin4α - sin4α + sin2α - sin4α + 3sin2α
= 2
chứng minh các đẳng thức sau :
a)\(\frac{cos\left(a-b\right)}{cos\left(a+b\right)}=\frac{cota.cotb+1}{cota.cotb-1}\)
b)\(2\left(sin^6a+cos^6a\right)+1=3\left(sin^4a+cos^4a\right)\)
c)\(\frac{tana-tanb}{cotb-cota}=tanatanb\)
d)\(\left(cotx+tanx\right)^2-\left(cotx-tanx\right)^2=4\)
e)\(\frac{sin^3a+cos^3a}{sina+cosa}=1-sinacosa\)
Lời giải:
a)
\(\frac{\cos (a-b)}{\cos (a+b)}=\frac{\cos a\cos b+\sin a\sin b}{\cos a\cos b-\sin a\sin b}=\frac{\frac{\cos a\cos b}{\sin a\sin b}+1}{\frac{\cos a\cos b}{\sin a\sin b}-1}=\frac{\cot a\cot b+1}{\cot a\cot b-1}\)
b)
\(2(\sin ^6a+\cos ^6a)+1=2(\sin ^2a+\cos ^2a)(\sin ^4a-\sin ^2a\cos ^2a+\cos ^4a)+1\)
\(=2(\sin ^4a-\sin ^2a\cos ^2a+\cos ^4a)+1\)
\(=3(\sin ^4a+\cos ^4a)-(\sin ^4a+\cos ^4a+2\sin ^2a\cos ^2a)+1\)
\(=3(\sin ^4a+\cos ^4a)-(\sin ^2a+\cos ^2a)^2+1\)
\(=3(\sin ^4a+\cos ^4a)-1^2+1=3(\sin ^4a+\cos ^4a)\)
c)
\(\frac{\tan a-\tan b}{cot b-\cot a}=\frac{\tan a-\tan b}{\frac{1}{\tan b}-\frac{1}{\tan a}}\) (nhớ rằng \(\tan x.\cot x=1\rightarrow \cot x=\frac{1}{\tan x}\) )
\(=\frac{\tan a-\tan b}{\frac{\tan a-\tan b}{\tan a\tan b}}=\tan a\tan b\)
d)
\((\cot x+\tan x)^2-(\cot x-\tan x)^2=(\cot ^2x+\tan ^2x+2\cot x\tan x)-(\cot ^2x-2\cot x\tan x+\tan ^2x)\)
\(=4\cot x\tan x=4.1=4\)
e)
\(\frac{\sin ^3a+\cos ^3a}{\sin a+\cos a}=\frac{(\sin a+\cos a)(\sin ^2a-\sin a\cos a+\cos ^2a)}{\sin a+\cos a}\)
\(=\sin ^2a-\sin a\cos a+\cos ^2a=(\sin ^2a+\cos ^2a)-\sin a\cos a=1-\sin a\cos a\)
Vậy ta có đpcm.