tim so nguyen x, y\(\dfrac{x}{2}-\dfrac{2}{y}=\dfrac{1}{2}\)
1. tim cac so nguyen x, y biet
a.\(\dfrac{x}{2}\)bang\(\dfrac{-6}{3}\)
b. \(\dfrac{2}{x}\)bang \(\dfrac{y}{-3}\)
c. \(\dfrac{x}{y}\)bang\(\dfrac{-3}{11}\)
d. \(\dfrac{x}{y-1}\)bang\(\dfrac{5}{-19}\)
a) \(\dfrac{x}{2}=-\dfrac{6}{3}=-2\Rightarrow x=2.\left(-2\right)=-4\)
b) \(\dfrac{2}{x}=\dfrac{y}{-3}\Leftrightarrow y=-\dfrac{6}{x}\) y thuộc Z => x thuộc {+-6;+-3;+-2;+-1}
(x;y) =(-6;1);(-3;2); (-2;3);(-1;6) ; (6;-1);(3-2);(2;-3);(1;-6)
cho x,y,z nguyen duong thoa man: \(\left\{{}\begin{matrix}\left|x-2y\right|\le\dfrac{1}{\sqrt{x}}\\\left|y-2x\right|\le\dfrac{1}{\sqrt{y}}\end{matrix}\right.\)
tim Max \(A=x^2+2y^2\)
Sau vài phút cố gắng thì khẳng định đề bài của em bị sai
1. Cho x,y > 0 .Tim GTNN cua A = \(\dfrac{x^2}{y^2}+\dfrac{4y^2}{x^2}-\dfrac{x}{y}-\dfrac{2y}{y}+1\)
Bai 1: Cho A=\(\dfrac{a^2+2a+1}{a-1}\):(\(\dfrac{a+1}{a}\)-\(\dfrac{1}{1-a}\)+\(\dfrac{2-a^2}{a^2-a}\))
a,Rut gon
b,Tinh A biet |4a-7| =1
c,Tim a de A>0
d,Tim GTNN cua A
e, So sanh A voi\(\dfrac{-1}{2}\)
Bai 2:P=(\(\dfrac{x-1}{x+1}\)-\(\dfrac{x}{x-1}\)-\(\dfrac{3x+1}{1-x^2}\)):\(\dfrac{2x+1}{x^2-1}\)
a,Rut gon
b,Tim x de P=\(\dfrac{3}{x-1}\)
c,Tim gia tri nguyen cua x de P nhan gia tri nguyen
Bài 2:
a, ĐKXĐ: \(x\ne\pm1;x\ne\dfrac{-1}{2}\)
\(P=\left(\dfrac{x-1}{x+1}-\dfrac{x}{x-1}-\dfrac{3x+1}{1-x^2}\right):\dfrac{2x+1}{x^2-1}\)
\(P=\left(\dfrac{x-1}{x+1}-\dfrac{x}{x-1}+\dfrac{3x+1}{x^2-1}\right).\dfrac{x^2-1}{2x+1}\)
\(P=\dfrac{\left(x-1\right)^2-x\left(x+1\right)+3x+1}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\)
\(P=\dfrac{x^2-2x+1-x^2-x+3x+1}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\)
\(P=\dfrac{2}{2x+1}\)
b, ĐKXĐ: \(x\ne\pm1;x\ne\dfrac{-1}{2}\)
Để \(P=\dfrac{3}{x-1}\Leftrightarrow\dfrac{2}{2x+1}=\dfrac{3}{x-1}\Leftrightarrow2\left(x-1\right)=3\left(2x+1\right)\)
\(\Leftrightarrow2x-2=6x+3\)\(\Leftrightarrow-4x=5\Leftrightarrow x=\dfrac{-5}{4}\)(TMĐK)
c, \(ĐKXĐ:x\ne\pm1;x\ne\dfrac{-1}{2}\)
Để \(P\in Z\Leftrightarrow\dfrac{2}{2x+1}\in Z\Leftrightarrow2x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
+) Với \(2x+1=1\Leftrightarrow x=0\left(TMĐK\right)\)
+) Với \(2x+1=-1\Leftrightarrow x=-1\left(KTMĐK\right)\)
+) Với \(2x+1=2\Leftrightarrow x=\dfrac{1}{2}\left(TMĐK\right)\)
+) Với \(2x+1=-2\Leftrightarrow x=\dfrac{-3}{2}\left(TMĐK\right)\)
Vậy để \(P\in Z\Leftrightarrow x\in\left\{0;\dfrac{1}{2};\dfrac{-3}{2}\right\}\)
Cho P = \(\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right)\): \(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{2}{x-1}\right)\)
a/ Tim DKXD va rut gon P
b/ Tim cac gia tri nguyen cua x de P co gia tri nguyen
a ) ĐK : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)\(P=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^{^2}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\dfrac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+3}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{x+4\sqrt{x}+3}\)
a,\(\dfrac{y+z+1}{x}=\dfrac{z+x+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)
b, 10x = 6y va 2x2 - y2 = -28
Tim x,y,z(cau a)
tim x,y ( cau b)
\(a)\dfrac{y+z+1}{x}=\dfrac{z+x+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{y+z+x+x+z+2+x+y-3}{x+y+z}\)
\(=\dfrac{\left(x+y+z\right)+\left(x+y+z\right)+\left(1+2-3\right)}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
Lại có: \(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)
\(\Rightarrow2=\dfrac{1}{x+y+z}\Rightarrow2\left(x+y+z\right)=1\Rightarrow x+y+z=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y+z+1}{x}=2\\\dfrac{x+z+2}{y}=2\\\dfrac{x+y-3}{z}=2\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y+z+1=2x\\x+z+2=2y\\x+y-3=2z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y+z+x+1=3x\\x+y+z+2=3y\\x+y+z-3=3z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}+1=3x\\\dfrac{1}{2}+2=3y\\\dfrac{1}{2}-3=3z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1+\dfrac{1}{2}}{3}\\y=\dfrac{\dfrac{1}{2}+2}{3}\\z=\dfrac{\dfrac{1}{2}-3}{3}\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{6}\\z=\dfrac{-5}{6}\end{matrix}\right.\)
Chúc bạn học tốt!
Cho cac bieu thuc :
\(A=\dfrac{\sqrt{x}+4}{\sqrt{x}+2},B=\left(\dfrac{\sqrt{x}}{\sqrt{x}+4}+\dfrac{4}{\sqrt{x}-4}\right):\dfrac{x+16}{\sqrt{x}+2}\)
a) Rut gon B ?
b) Tim cac gia tri nguyen cua x de cac gia tri cua bieu thuc B(A-1) la so nguyen.
Lần sau ghi dấu ra xíu nhé :v
a) Đặt \(\sqrt{x}=a\Rightarrow B=\left(\dfrac{a}{a+4}+\dfrac{4}{a-4}\right):\dfrac{a^2+16}{a+2}\)
Quy đồng,rút gọn : \(B=\dfrac{a+2}{a^2-16}\Rightarrow B=\dfrac{\sqrt{x}+2}{x-16}\)
b) \(B\left(A-1\right)=\dfrac{\sqrt{x}+2}{x-16}\left(\dfrac{\sqrt{x}+4}{\sqrt{x}+2}-1\right)=\dfrac{2}{x-16}\)
x - 16 là ước của 2 => \(x\in\left\{14;15;17;18\right\}\)
mới làm quen toán 9 ;v có gì k rõ ae chỉ bảo nhé :))
tim nghiem nguyen duong cua phuong trinh \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{7}\)
Lời giải:
Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{7}\Leftrightarrow \frac{x+y}{xy}=\frac{1}{7}\)
\(\Rightarrow 7(x+y)=xy\)
\(\Leftrightarrow (xy-7x)-7y=0\)
\(\Leftrightarrow x(y-7)-7(y-7)=49\)
\(\Leftrightarrow (x-7)(y-7)=49(*)\)
Vì $x,y$ đều là số nguyên dương nên \(x-7,y-7\geq -6\)
Do đó từ $(*)$ ta có xét những TH sau:
TH1: \(\left\{\begin{matrix} x-7=1\\ y-7=49\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=8\\ y=56\end{matrix}\right.\) (t/m)
TH2: \(\left\{\begin{matrix} x-7=49\\ y-7=1\end{matrix}\right.\Rightarrow x=56; y=8\) (t/m)
TH3: \(\left\{\begin{matrix} x-7=7\\ y-7=7\end{matrix}\right.\Rightarrow x=y=14\) (t/m)
Vậy ......
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{7}\Rightarrow\dfrac{1}{x}=\dfrac{y-7}{7y}\Rightarrow x=\dfrac{7y}{y-7}=7+\dfrac{49}{y-7}\)
Để x, y nguyên \(\Rightarrow49⋮y-7\Rightarrow y-7=Ư\left(49\right)=\left\{-49;-7;-1;1;7;49\right\}\)
\(y-7=-49\Rightarrow y=-42< 0\) (loại)
\(y-7=-7\Rightarrow y=0\) (loại)
\(y-7=-1\Rightarrow y=6\Rightarrow x=-42< 0\) (loại)
\(y-7=1\Rightarrow y=8\Rightarrow x=56\)
\(y-7=7\Rightarrow y=14\Rightarrow x=14\)
\(y-7=49\Rightarrow y=56\Rightarrow x=8\)
Vậy pt có 3 cặp nghiệm nguyên dương \(\left(x;y\right)=\left(56;8\right);\left(14;14\right);\left(8;56\right)\)
Cho x>0 ,y>0 thoa man dieu kien \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\)
Tim GTNN cua \(\sqrt{x}+\sqrt{y}\)
Cho 0<x<2
Tim GTNN A=\(\dfrac{9x}{2-x}+\dfrac{2}{x}\)
# Bài 1
* Ta cm BĐT sau \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\) (1) bằng cách biến đổi tương đương
* Với \(x,y>0\) áp dụng (1) ta có
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{\left(\sqrt{x}\right)^2}+\dfrac{1}{\left(\sqrt{y}\right)^2}\ge\dfrac{1}{2}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\)
Mà \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\)
\(\Rightarrow\) \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\le1\) \(\Leftrightarrow\) \(0< \dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\le1\) (I)
* Ta cm BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) với \(a,b>0\) (2)
Áp dụng (2) với x , y > 0 ta có
\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\ge\dfrac{4}{\sqrt{x}+\sqrt{y}}\) (II)
* Từ (I) và (II) \(\Rightarrow\) \(\dfrac{4}{\sqrt{x}+\sqrt{y}}\le1\)
\(\Leftrightarrow\) \(\sqrt{x}+\sqrt{y}\ge4\)
Dấu "=" xra khi \(x=y=4\)
Vậy min \(\sqrt{x}+\sqrt{y}=4\) khi \(x=y=4\)