\(\dfrac{x}{2}-\dfrac{2}{y}=\dfrac{1}{2}\Leftrightarrow-\dfrac{2}{y}=\dfrac{1}{2}-\dfrac{x}{2}=\dfrac{2-2x}{4}\Leftrightarrow\dfrac{2}{y}=\dfrac{2x-2}{4}\Leftrightarrow\dfrac{1}{y}=\dfrac{x-1}{4}\Leftrightarrow y\left(x-1\right)=4=\left(-1\right).\left(-4\right)=\left(-4\right).\left(-1\right)=\left(-2\right).\left(-2\right)=1.4=4.1=2.2.\)
\(\text{Xét: 6TH:}\)
\(+,\left\{{}\begin{matrix}x-1=2\Leftrightarrow x=3\\y=2\end{matrix}\right.\)
\(+,\left\{{}\begin{matrix}x-1=-1\Leftrightarrow x=0\\y=-4\end{matrix}\right.\)
\(+,\left\{{}\begin{matrix}x-1=-4\Leftrightarrow x=-3\\y=-1\end{matrix}\right.\)
\(+,\left\{{}\begin{matrix}x-1=-2\Leftrightarrow x=-1\\y=-2\end{matrix}\right.\)
\(+,\left\{{}\begin{matrix}x-1=1\Leftrightarrow x=2\\y=4\end{matrix}\right.\)
\(+,\left\{{}\begin{matrix}x-1=4\Leftrightarrow x=5\\y=1\end{matrix}\right.\)
\(Vậy:\left(x,y\right)\in\left\{\left(5;1\right);\left(2;4\right);\left(-1;-2\right);\left(-3;-1\right);\left(0;-4\right);\left(3;2\right)\right\}\)