Bài 4: Liên hệ giữa phép chia và phép khai phương

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vo Thi Minh Dao

tim nghiem nguyen duong cua phuong trinh \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{7}\)

Akai Haruma
16 tháng 11 2018 lúc 18:30

Lời giải:

Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{7}\Leftrightarrow \frac{x+y}{xy}=\frac{1}{7}\)

\(\Rightarrow 7(x+y)=xy\)

\(\Leftrightarrow (xy-7x)-7y=0\)

\(\Leftrightarrow x(y-7)-7(y-7)=49\)

\(\Leftrightarrow (x-7)(y-7)=49(*)\)

Vì $x,y$ đều là số nguyên dương nên \(x-7,y-7\geq -6\)

Do đó từ $(*)$ ta có xét những TH sau:

TH1: \(\left\{\begin{matrix} x-7=1\\ y-7=49\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=8\\ y=56\end{matrix}\right.\) (t/m)

TH2: \(\left\{\begin{matrix} x-7=49\\ y-7=1\end{matrix}\right.\Rightarrow x=56; y=8\) (t/m)

TH3: \(\left\{\begin{matrix} x-7=7\\ y-7=7\end{matrix}\right.\Rightarrow x=y=14\) (t/m)

Vậy ......

Nguyễn Việt Lâm
16 tháng 11 2018 lúc 18:41

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{7}\Rightarrow\dfrac{1}{x}=\dfrac{y-7}{7y}\Rightarrow x=\dfrac{7y}{y-7}=7+\dfrac{49}{y-7}\)

Để x, y nguyên \(\Rightarrow49⋮y-7\Rightarrow y-7=Ư\left(49\right)=\left\{-49;-7;-1;1;7;49\right\}\)

\(y-7=-49\Rightarrow y=-42< 0\) (loại)

\(y-7=-7\Rightarrow y=0\) (loại)

\(y-7=-1\Rightarrow y=6\Rightarrow x=-42< 0\) (loại)

\(y-7=1\Rightarrow y=8\Rightarrow x=56\)

\(y-7=7\Rightarrow y=14\Rightarrow x=14\)

\(y-7=49\Rightarrow y=56\Rightarrow x=8\)

Vậy pt có 3 cặp nghiệm nguyên dương \(\left(x;y\right)=\left(56;8\right);\left(14;14\right);\left(8;56\right)\)


Các câu hỏi tương tự
Vo Thi Minh Dao
Xem chi tiết
khanh hoa
Xem chi tiết
Nguyễn Thảo Hân
Xem chi tiết
Hương Phùng
Xem chi tiết
Triệu Đức Hoàng
Xem chi tiết
Nguyễn Thảo Hân
Xem chi tiết
Bảo
Xem chi tiết
Trân Vũ
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết