rút gọn biểu thức : \(C=\left(1+cosx\right)sin^3x+\left(1+tãnx\right)cos^3x-sinxcosx\)
\(1.\left(sinx+cosx\right)^3+sinxcosx-1=0\)
\(2.\left(sinx+cosx\right)^4-3sin2x-1=0\)
\(3.sin^3x+cos^3x+2\left(sinx+cosx\right)-3sin2x=0\)
\(4.\left(sinx-cosx\right)^3=1+sinxcosx\)
5.\(sinx+cosx+2+tanx+cotx+\frac{1}{sinx}+\frac{1}{cosx}=0\)
1.
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
Pt trở thành:
\(t^3+\frac{t^2-1}{2}-1=0\)
\(\Leftrightarrow2t^3+t^2-3=0\)
\(\Leftrightarrow\left(t-1\right)\left(2t^2+3t+3\right)=0\)
\(\Leftrightarrow t=1\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sin2x=2sinx.cosx=t^2-1\end{matrix}\right.\)
Pt trở thành:
\(t^4-3\left(t^2-1\right)-1=0\)
\(\Leftrightarrow t^4-3t^2+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t^2=1\\t^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}1+sin2x=1\\1+sin2x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\sin2x=1\end{matrix}\right.\)
\(\Leftrightarrow...\)
3.
\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)+2\left(sinx+cosx\right)-6sinx.cosx=0\)
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
Pt trở thành:
\(t\left(1-\frac{t^2-1}{2}\right)+2t-3\left(t^2-1\right)=0\)
\(\Leftrightarrow-t^3-6t^2+7t+6=0\)
Nghiệm của pt bậc 3 này rất xấu, chắc bạn ghi ko đúng đề bài
giải các phương trình sau:
1) \(\sqrt{3}sin^2x+\left(1-\sqrt{3}\right)sinxcosx-cos^2x+1-\sqrt{3}=0\)
2) \(9sin^2x-30sinxcosx+25cos^2x=25\)
3) \(sin2x-2sin^2x=2cos2x\)
4) \(sin^3x-cos^3x=sinx+cosx\)
5)\(4\left(sin^3x+cos^3x\right)=sinx+cosx\)
mik lm biếng quá mik chỉ nói cách làm thôi nha bạn
1) chia hai vế cho cos^2(x) \(\sqrt{3}tan^2x+\left(1-\sqrt{3}\right)tanx-1+\left(1-\sqrt{3}\right)\left(1+tan^2x\right)=0\)
đặt t = tanx rr giải thôi =D ( máy 570 thì mode5 3 còn máy 580 thì mode 9 2 2) :)))
2) cx làm cách tương tự chia 2 vế cho cos^2x
3) giữ vế trái bung vế phải ra
\(sin2x-2sin^2x=2-4sin^22x\)
đặt t = sin2x (-1=<t=<1)
4) đẩy sinx cosx qua trái hết
\(sinx\left(sin^2-1\right)-cosx\left(cos^2x+1\right)=0\)
\(sinx\left(-cos^2x\right)-cos\left(cos^2x+1\right)=0\)
\(-cos\left(sinxcosx+cos^2x+1\right)=0\)
cái vế đầu cosx=0 bn bik giả rr mà dễ ẹc à còn vế sau thì chia cho cos^2(x) như mấy bài trên rr sau đó đặt t = tanx rr bấm máy là ra thui :))
5)bung cái hằng đẳng thức ra sau đó đặt t=sinx+cosx (t thuộc [-căn(2) ; căn(2)]
khi đó ta có sinxcosx=1/2 sin2x= 1/2t^2 - 1/2
làm đi là ra à
Rúi gọn biểu thức :
\(A=\dfrac{\cos\left(x\right)+\cos\left(2x\right)+\cos\left(3x\right)}{\sin\left(x\right)+\sin\left(2x\right)+\sin\left(3x\right)}\)
\(A=\dfrac{cosx+cos3x+cos2x}{sinx+sin3x+sin2x}=\dfrac{2cos2x.cosx+cos2x}{2sin2x.cosx+sin2x}=\dfrac{cos2x\left(2cosx+1\right)}{sin2x\left(2cosx+1\right)}\)
\(=\dfrac{cos2x}{sin2x}=cot2x\)
Rút gọn biểu thức \(M = \cos \left( {a + b} \right)\cos \left( {a - b} \right) - \sin \left( {a + b} \right)\sin \left( {a - b} \right)\), ta được
A. \(M = \sin 4a\)
B. \(M = 1 - 2{\cos ^2}a\)
C. \(M = 1 - 2{\sin ^2}a\)
D. \(M = \cos 4a\)
\(\cos \left( {a + b} \right)\cos \left( {a - b} \right) - \sin \left( {a + b} \right)\sin \left( {a - b} \right)\)
\( = \frac{1}{2}\left[ {\cos \left( {a + b - a + b} \right) + \cos \left( {a + b + a - b} \right)} \right] - \frac{1}{2}\left[ {\cos \left( {a + b - a + b} \right) - \cos \left( {a + b + a - b} \right)} \right]\)
\( = \frac{1}{2}\left( {\cos 2b + \cos 2a - \cos 2b + \cos 2a} \right) = \frac{1}{2}.2\cos 2a = \cos 2a = 1 - 2{\sin ^2}a\)
Vậy chọn đáp án C
Rút gọn :
\(A=\dfrac{sin\left(x+y\right)-sinx}{sin\left(x+y\right)+sinx}-\dfrac{cos\left(x+y\right)+cosx}{cos\left(x+y\right)-cosx}\)
giải các pt
a) \(sin^3x.cosx-sinx.cos^3x=\frac{\sqrt{2}}{8}\)
b) \(sin^3x-cos^24x=sin^25x-cos^26x\)
c) \(\left(2sinx-cosx+1\right)\left(1+cosx\right)=sin^2x\)
d) \(sin7x+sin9x=2\left[cos^2\left(\frac{\pi}{4}-x\right)-cos^2\left(\frac{\pi}{4}+2x\right)\right]\)
a/
\(\Leftrightarrow sinx.cosx\left(sin^2x-cos^2x\right)=\frac{\sqrt{2}}{8}\)
\(\Leftrightarrow2sinx.cosx\left(cos^2x-sin^2x\right)=-\frac{\sqrt{2}}{4}\)
\(\Leftrightarrow sin2x.cos2x=-\frac{\sqrt{2}}{4}\)
\(\Leftrightarrow\frac{1}{2}sin4x=-\frac{\sqrt{2}}{4}\)
\(\Leftrightarrow sin4x=-\frac{\sqrt{2}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}4x=-\frac{\pi}{4}+k2\pi\\4x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{16}+\frac{k\pi}{2}\\x=\frac{5\pi}{16}+\frac{k\pi}{2}\end{matrix}\right.\)
b/
Câu này đề hơi kì quái, bạn coi lại đề được ko? Biến đổi mấy cách vẫn thấy ko ổn
c/
\(\Leftrightarrow\left(2sinx-cosx+1\right)\left(1+cosx\right)=1-cos^2x\)
\(\Leftrightarrow\left(2sinx-cosx+1\right)\left(1+cosx\right)=\left(1-cosx\right)\left(1+cosx\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}1+cosx=0\left(1\right)\\2sinx-cosx+1=1-cosx\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow cosx=-1\Leftrightarrow\pi x=\pi+k2\pi\)
\(\left(2\right)\Leftrightarrow2sinx=0\Rightarrow sinx=0\)
\(\Rightarrow x=k\pi\)
Kết hợp lại ta được \(x=k\pi\)
d/
\(\Leftrightarrow2sin8x.cosx=cos\left(\frac{\pi}{2}-2x\right)+1-1-cos\left(\frac{\pi}{2}+4x\right)\) (hạ bậc vế phải)
\(\Leftrightarrow2sin8x.cosx=sin2x+sin4x\)
\(\Leftrightarrow2sin8x.cosx=2sin3x.cosx\)
\(\Leftrightarrow cosx\left(sin8x-sin3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin8x=sin3x\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\8x=3x+k2\pi\\8x=\pi-3x+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{k2\pi}{5}\\x=\frac{\pi}{11}+\frac{k2\pi}{11}\end{matrix}\right.\)
1,Giải phương trình:
a,\(cos^3x+sin^3x=cos2x\)
b,\(cos^3x+sin^3x=2sin2x+sinx+cosx\)
c,\(2cos^3x=sin3x\)
d,\(cos^2x-\sqrt{3}sin2x=1+sin^2x\)
e,\(cos^3x+sin^3x=2\left(cos^5x+sin^5x\right)\)
a, (sinx + cosx)(1 - sinx . cosx) = (cosx - sinx)(cosx + sinx)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx-sinx=1-sinx.cosx\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx+sinx.cosx-1-sinx=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\\left(cosx-1\right)\left(sinx+1\right)=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sin\left(x+\dfrac{\pi}{4}\right)=0\\cosx=1\\sinx=-1\end{matrix}\right.\)
b, (sinx + cosx)(1 - sinx . cosx) = 2sin2x + sinx + cosx
⇔ (sinx + cosx)(1 - sinx.cosx - 1) = 2sin2x
⇔ (sinx + cosx).(- sinx . cosx) = 2sin2x
⇔ 4sin2x + (sinx + cosx) . sin2x = 0
⇔ \(\left[{}\begin{matrix}sin2x=0\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+4=0\end{matrix}\right.\)
⇔ sin2x = 0
c, 2cos3x = sin3x
⇔ 2cos3x = 3sinx - 4sin3x
⇔ 4sin3x + 2cos3x - 3sinx(sin2x + cos2x) = 0
⇔ sin3x + 2cos3x - 3sinx.cos2x = 0
Xét cosx = 0 : thay vào phương trình ta được sinx = 0. Không có cung x nào có cả cos và sin = 0 nên cosx = 0 không thỏa mãn phương trình
Xét cosx ≠ 0 chia cả 2 vế cho cos3x ta được :
tan3x + 2 - 3tanx = 0
⇔ \(\left[{}\begin{matrix}tanx=1\\tanx=-2\end{matrix}\right.\)
d, cos2x - \(\sqrt{3}sin2x\) = 1 + sin2x
⇔ cos2x - sin2x - \(\sqrt{3}sin2x\) = 1
⇔ cos2x - \(\sqrt{3}sin2x\) = 1
⇔ \(2cos\left(2x+\dfrac{\pi}{3}\right)=1\)
⇔ \(cos\left(2x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}=cos\dfrac{\pi}{3}\)
e, cos3x + sin3x = 2cos5x + 2sin5x
⇔ cos3x (1 - 2cos2x) + sin3x (1 - 2sin2x) = 0
⇔ cos3x . (- cos2x) + sin3x . cos2x = 0
⇔ \(\left[{}\begin{matrix}sin^3x=cos^3x\\cos2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}sinx=cosx\\cos2x=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\cos2x=0\end{matrix}\right.\)
Áp dụng CT nhân ba \(sin\left(3x\right)=3sinx-4sin^3x\) để rút gọn biểu thức sau:
\(S=\dfrac{1}{3}sin^3a+\dfrac{1}{9}sin^3\left(3a\right)+\dfrac{1}{27}sin^3\left(9a\right)+.....+\dfrac{1}{3^n}sin^3\left(3^{n-1}a\right)\)
giải các pt
a) \(sin\left(\frac{3\pi}{10}-\frac{x}{2}\right)=\frac{1}{2}sin\left(\frac{\pi}{10}+\frac{3x}{2}\right)\)
b) \(4\left(sin^2x+\frac{1}{sin^2x}\right)+4\left(sinx+\frac{1}{sinx}\right)=7\)
c) \(9\left(\frac{2}{cosx}+cosx\right)+2\left(cos^2x+\frac{4}{cos^2x}\right)=1\)
d) \(2\left(cos^2x+\frac{4}{cos^2x}\right)+9\left(\frac{2}{cosx}-cosx\right)=1\)
a/
\(\Leftrightarrow cos\left(\frac{x}{2}+\frac{\pi}{5}\right)=\frac{1}{2}sin\left(\frac{3x}{2}+\frac{\pi}{10}\right)\)
Đặt \(\frac{x}{2}+\frac{\pi}{5}=a\Rightarrow\frac{x}{2}=a-\frac{\pi}{5}\Rightarrow\frac{3x}{2}=3a-\frac{3\pi}{5}\)
Pt trở thành:
\(cosa=\frac{1}{2}sin\left(3a-\frac{3\pi}{5}+\frac{\pi}{10}\right)\)
\(\Leftrightarrow cosa=\frac{1}{2}sin\left(3a-\frac{\pi}{2}\right)\)
\(\Leftrightarrow cosa=-\frac{1}{2}sin\left(\frac{\pi}{2}-3a\right)=-\frac{1}{2}cos3a\)
\(\Leftrightarrow cos3a+2cosa=0\)
\(\Leftrightarrow4cos^3a-3cosa+2cosa=0\)
\(\Leftrightarrow4cos^3a-cosa=0\)
\(\Leftrightarrow cosa\left(4cos^2a-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}cosa=0\\cosa=\frac{1}{2}\\cosa=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}cos\left(\frac{x}{2}+\frac{\pi}{5}\right)=0\\cos\left(\frac{x}{2}+\frac{\pi}{5}\right)=\frac{1}{2}\\cos\left(\frac{x}{2}+\frac{\pi}{5}\right)=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{x}{2}+\frac{\pi}{5}=\frac{\pi}{2}+k\pi\\\frac{x}{2}+\frac{\pi}{5}=\pm\frac{\pi}{3}+k2\pi\\\frac{x}{2}+\frac{\pi}{5}=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow x=...\) (5 nghiệm bạn tự biến đổi)
b/
ĐKXĐ: ...
Đặt \(sinx+\frac{1}{sinx}=a\Rightarrow sin^2x+\frac{1}{sin^2x}=a^2-2\)
Pt trở thành:
\(4\left(a^2-2\right)+4a=7\)
\(\Leftrightarrow4a^2+4a-15=0\Rightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-\frac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}sinx+\frac{1}{sinx}=\frac{3}{2}\\sinx+\frac{1}{sinx}=-\frac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin^2x-\frac{3}{2}sinx+1=0\left(vn\right)\\sin^2x+\frac{5}{2}sinx+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\\sinx=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
c/
ĐKXĐ: ...
Đặt \(cosx+\frac{2}{cosx}=a\Rightarrow cos^2x+\frac{4}{cos^2x}=a^2-4\)
Pt trở thành:
\(9a+2\left(a^2-4\right)=1\)
\(\Leftrightarrow2a^2+9a-9=0\)
Pt này nghiệm xấu quá bạn :(
d/ĐKXĐ: ...
Đặt \(\frac{2}{cosx}-cosx=a\Rightarrow cos^2x+\frac{4}{cos^2x}=a^2+4\)
Pt trở thành:
\(2\left(a^2+4\right)+9a-1=0\)
\(\Leftrightarrow2a^2+9a+7=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=-\frac{7}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{2}{cosx}-cosx=-1\\\frac{2}{cosx}-cosx=-\frac{7}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-cos^2x+cosx+2=0\\-cos^2x+\frac{7}{2}cosx+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}cosx=-1\\cosx=2\left(l\right)\\cosx=4\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)