Giải : 2sin²x + 3cosx-3 =0
Giải các phương trình sau:
a) Sinx + \(\sqrt{3}\) Cosx + 2Sin(\(\dfrac{\Pi}{6}\)-x) = \(\sqrt{2}\)
b) 3Cosx - 4Sinx + \(\dfrac{2}{3Cosx-4Sinx-6}\)= 3
c) 8Sinx = \(\dfrac{\sqrt{3}}{Cosx}+\dfrac{1}{Sinx}\)
d) 3Sin3x - \(\sqrt{3}\) Cos9x = 1 + 4Sin33x
e) 5Sin2x - 6Cos2x = 13
f) Cos7x - \(\sqrt{3}\) Sin7x - Sinx = \(\sqrt{3}\) Cos x
giải phương trình:
1) \(2\sqrt{2}cos^3x\left(x-\frac{\pi}{4}\right)-3cosx-sinx=0\)
2) \(tanx.sin^2x-2sin^2x=3\left(cos2x+sinxcosx\right)\)
3) \(2sin^3x=cosx\)
4) \(6sinx-2cos^3x=\frac{5sin4xcosx}{2cos2x}\)
Cho 2sinx . siny - 3cosx . cosy = 0
CMR \(\dfrac{1}{2sin^2x+3cos^2x}+\dfrac{1}{2sin^2y+3cos^2y}=\dfrac{5}{6}\)
1.cho cotx = -6 tính F = \(\dfrac{sinx-3cosx}{cosx+2sinx}\)
2. cho cotx = 1 tính I = \(\dfrac{sin^3x-4cos^3x}{sinx+3cosx}\)
3. cho cotx = 3 tính I = \(\dfrac{2sin^3x+cos^3x}{4sinx-6cosx}\)
1: cot x=-6 nên cosx/sinx=-6
=>cosx=-6*sinx
\(F=\dfrac{sinx-3\cdot cosx}{cosx+2\cdot sinx}=\dfrac{sinx+18\cdot sinx}{-6\cdot sinx+2\cdot sinx}=\dfrac{20}{-4}=-5\)
2: cotx=1
=>cosx/sinx=1
=>cosx=sinx
\(I=\dfrac{sin^3x-4\cdot sin^3x}{sinx+3sinx}=\dfrac{5\cdot sin^3x}{4\cdot sinx}=\dfrac{5}{4}\cdot sin^2x\)
\(1+cot^2x=\dfrac{1}{sin^2x}\)
=>\(\dfrac{1}{sin^2x}=1+1=2\)
=>sin^2=1/2
=>\(I=\dfrac{5}{4}\cdot\dfrac{1}{2}=\dfrac{5}{8}\)
3: cotx=3
=>cosx/sinx=3
=>cosx=3*sinx
1+cot^2x=1/sin^2x
=>\(\dfrac{1}{sin^2x}=1+9=10\)
=>\(sin^2x=\dfrac{1}{10}\)
\(I=\dfrac{2\cdot sin^3x+cos^3x}{4\cdot sinx-6\cdot cosx}\)
\(=\dfrac{2\cdot sin^3x+\left(3\cdot sinx\right)^3}{4\cdot sinx-6\cdot\left(3\cdot sinx\right)}=\dfrac{2\cdot sin^3x+27\cdot sin^3x}{4\cdot sinx-18\cdot sinx}\)
\(=\dfrac{29}{-14}\cdot sin^2x=\dfrac{-29}{14}\cdot\dfrac{1}{10}=-\dfrac{29}{140}\)
a, Cho góc nhọn x có sinx =3/5.Tính giá trị của biểu thức 5cosx+3cosx
b, Cho góc nhọn x.Chứng minh 1–2sin^2x/cossx–sinx
1. Tìm txđ: y=cot2(2x+pi/7)
2. Tìm m để pt vô nghiệm
2sin2x+msin2x=2m
3. Giải
(2sinx+1)(cos2x+2sin2x-10)=0 với (0<x<4pi)
3cosx+cos2x-cos3x+1=2sinx.sin2x
(Biến đổi giúp mình, mình biết tự làm phần còn lại, cảm ơn nhìu hu hu)
1.
ĐKXĐ: \(sin\left(2x+\frac{\pi}{7}\right)\ne0\)
\(\Leftrightarrow2x+\frac{\pi}{7}\ne k\pi\)
\(\Leftrightarrow...\)
2.
\(\Leftrightarrow1-cos2x+m.sin2x=2m\)
\(\Leftrightarrow m.sin2x-cos2x=2m-1\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất, pt vô nghiệm khi:
\(m^2+\left(-1\right)^2< \left(2m-1\right)^2\)
\(\Leftrightarrow...\)
3.
a.
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\Leftrightarrow...\\cos2x+2sin2x=10\left(1\right)\end{matrix}\right.\)
Xét (1), ta có \(1^2+2^2< 10^2\) nên (1) vô nghiệm
b.
\(3cosx+2cos^2x-1-\left(4cos^3x-3cosx\right)+1=4sin^2x.cosx\)
\(\Leftrightarrow6cosx+2cos^2x-4cos^3x=4cosx\left(1-cos^2x\right)\)
\(\Leftrightarrow6cosx+2cos^2x-4cos^3x=4cosx-4cos^3x\)
\(\Leftrightarrow2cos^2x+2cosx=0\)
\(\Leftrightarrow cosx\left(cosx+1\right)=0\)
Giải: \(2\sqrt{2}cos^3\left(x-\dfrac{\pi}{4}\right)-3cosx-sinx=0\)
\(2\sqrt{2}cos^3\left(x-\dfrac{\pi}{4}\right)-3cosx-sinx=0\\ \Leftrightarrow\left(sinx+cosx\right)^3-3cosx-sinx=0\)
TH1: \(cosx=0\)
Phương trình có nghiệm \(x=\dfrac{\pi}{2}+k\pi\left(k\in Z\right)\)
TH2: \(cosx\ne0\)
Phương trình tương đương: \(\left(tanx+1\right)^3-3\left(1+tan^2x\right)-tanx\left(1+tan^2x\right)=0\\ \Leftrightarrow tanx=1\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\left(k\in Z\right)\)
Giaỉ các phương trình lượng giác sau:
1. 2sin2x+3sinx=3cosx
2. sin2x-4(sinx-cosx)=4
3. (1+sinx)(1+cosx)=2
4. 2(sinx-cosx)-sin2x-1=0
5. sinx-cosx+4sinxcosx+1=0
6. sinx=2cos\(^3\)x
7. cosx=2sin\(^3\)x
8. 2cos\(^3\)x=sin3x
1.
\(\Leftrightarrow4sinx.cosx+3\left(sinx-cosx\right)=0\)
Đặt \(sinx-cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=1-t^2\end{matrix}\right.\)
Pt trở thành:
\(2\left(1-t^2\right)+3t=0\)
\(\Leftrightarrow-2t^2+3t+2=0\Rightarrow\left[{}\begin{matrix}t=2\left(l\right)\\t=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow sinx-cosx=-\frac{1}{2}\)
\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=-\frac{1}{2}\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=-\frac{1}{2\sqrt{2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+arcsin\left(-\frac{1}{2\sqrt{2}}\right)+k2\pi\\x=\frac{5\pi}{4}-arcsin\left(-\frac{1}{2\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)
2.
Đặt \(sinx-cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sin2x=2sinx.cosx=1-t^2\end{matrix}\right.\)
Pt trở thành:
\(1-t^2-4t=4\)
\(\Leftrightarrow t^2+4t+3=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow sinx-cosx=-1\)
\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=-1\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\x-\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\frac{3\pi}{2}+k2\pi\end{matrix}\right.\)
3.
\(\Leftrightarrow1+cosx+sinx+sinx.cosx=2\)
\(\Leftrightarrow2\left(sinx+cosx\right)+2sinx.cosx-2=0\)
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=t^2-1\end{matrix}\right.\)
Pt trở thành:
\(2t+t^2-1-2=0\)
\(\Leftrightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow sinx+cosx=1\)
\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
a) \(2sin\left(x+\dfrac{\pi}{3}\right)+1=0\)
b) \(1+2sin\left(x-30^o\right)=0\)
c) \(\sqrt{3}+2sin\left(x-\dfrac{\pi}{6}\right)=0\)
d) \(2sin\left(x+10^o\right)+\sqrt{3}=0\)
e) \(\sqrt{2}+2sin\left(x-15^o\right)=0\)
f) \(\sqrt{2}sin\left(x-\dfrac{\pi}{3}\right)+1=0\)
g) \(3+\sqrt{5}sin\left(x+\dfrac{\pi}{3}\right)=0\)
h) \(1+sin\left(x-30^o\right)=0\)
i) \(3+\sqrt{5}sin\left(x-\dfrac{\pi}{6}\right)=0\)
k) \(2\sqrt{2}sin^2x-sin2x=0\)
a: =>2sin(x+pi/3)=-1
=>sin(x+pi/3)=-1/2
=>x+pi/3=-pi/6+k2pi hoặc x+pi/3=7/6pi+k2pi
=>x=-1/2pi+k2pi hoặc x=2/3pi+k2pi
b: =>2sin(x-30 độ)=-1
=>sin(x-30 độ)=-1/2
=>x-30 độ=-30 độ+k*360 độ hoặc x-30 độ=180 độ+30 độ+k*360 độ
=>x=k*360 độ hoặc x=240 độ+k*360 độ
c: =>2sin(x-pi/6)=-căn 3
=>sin(x-pi/6)=-căn 3/2
=>x-pi/6=-pi/3+k2pi hoặc x-pi/6=4/3pi+k2pi
=>x=-1/6pi+k2pi hoặc x=3/2pi+k2pi
d: =>2sin(x+10 độ)=-căn 3
=>sin(x+10 độ)=-căn 3/2
=>x+10 độ=-60 độ+k*360 độ hoặc x+10 độ=240 độ+k*360 độ
=>x=-70 độ+k*360 độ hoặc x=230 độ+k*360 độ
e: \(\Leftrightarrow2\cdot sin\left(x-15^0\right)=-\sqrt{2}\)
=>\(sin\left(x-15^0\right)=-\dfrac{\sqrt{2}}{2}\)
=>x-15 độ=-45 độ+k*360 độ hoặc x-15 độ=225 độ+k*360 độ
=>x=-30 độ+k*360 độ hoặc x=240 độ+k*360 độ
f: \(\Leftrightarrow sin\left(x-\dfrac{pi}{3}\right)=-\dfrac{1}{\sqrt{2}}\)
=>x-pi/3=-pi/4+k2pi hoặc x-pi/3=5/4pi+k2pi
=>x=pi/12+k2pi hoặc x=19/12pi+k2pi
g) \(3+\sqrt[]{5}sin\left(x+\dfrac{\pi}{3}\right)=0\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=-\dfrac{3}{\sqrt[]{5}}\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=sin\left[arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)\right]\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\\x+\dfrac{\pi}{3}=\pi-arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)-\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{3}-arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\end{matrix}\right.\)
h) \(1+sin\left(x-30^o\right)=0\)
\(\Leftrightarrow sin\left(x-30^o\right)=-1\)
\(\Leftrightarrow sin\left(x-30^o\right)=sin\left(-90^o\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-30^o=-90^0+k360^o\\x-30^o=180^o+90^0+k360^o\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-60^0+k360^o\\x=300^0+k360^o\end{matrix}\right.\)
\(\Leftrightarrow x=-60^0+k360^o\)