1.
\(\Leftrightarrow4sinx.cosx+3\left(sinx-cosx\right)=0\)
Đặt \(sinx-cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=1-t^2\end{matrix}\right.\)
Pt trở thành:
\(2\left(1-t^2\right)+3t=0\)
\(\Leftrightarrow-2t^2+3t+2=0\Rightarrow\left[{}\begin{matrix}t=2\left(l\right)\\t=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow sinx-cosx=-\frac{1}{2}\)
\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=-\frac{1}{2}\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=-\frac{1}{2\sqrt{2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+arcsin\left(-\frac{1}{2\sqrt{2}}\right)+k2\pi\\x=\frac{5\pi}{4}-arcsin\left(-\frac{1}{2\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)
2.
Đặt \(sinx-cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sin2x=2sinx.cosx=1-t^2\end{matrix}\right.\)
Pt trở thành:
\(1-t^2-4t=4\)
\(\Leftrightarrow t^2+4t+3=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow sinx-cosx=-1\)
\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=-1\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\x-\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\frac{3\pi}{2}+k2\pi\end{matrix}\right.\)
3.
\(\Leftrightarrow1+cosx+sinx+sinx.cosx=2\)
\(\Leftrightarrow2\left(sinx+cosx\right)+2sinx.cosx-2=0\)
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=t^2-1\end{matrix}\right.\)
Pt trở thành:
\(2t+t^2-1-2=0\)
\(\Leftrightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow sinx+cosx=1\)
\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
4.
Đặt \(sinx-cosx=t\Rightarrow...\)
Phương trình trở thành:
\(2t-\left(1-t^2\right)-1=0\)
\(\Leftrightarrow t^2+2t-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\sqrt{3}-1\\t=-\sqrt{3}-1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=\sqrt{3}-1\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=\frac{\sqrt{3}-1}{\sqrt{2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+arcsin\left(\frac{\sqrt{3}-1}{\sqrt{2}}\right)+k2\pi\\x=\frac{5\pi}{4}-arcsin\left(\frac{\sqrt{3}-1}{\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)
5.
Đặt \(sinx-cosx=t\Rightarrow...\)
Pt trở thành:
\(t+2\left(1-t^2\right)+1=0\)
\(\Leftrightarrow-2t^2+t+3=0\)
\(\Rightarrow\left[{}\begin{matrix}t=-1\\t=\frac{3}{2}>\sqrt{2}\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=-1\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\x-\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\frac{3\pi}{2}+k2\pi\end{matrix}\right.\)
6.
Nhận thấy \(cosx=0\) không phải nghiệm, chia 2 vế của pt cho \(cos^3x\)
\(\Leftrightarrow\frac{sinx}{cosx}.\frac{1}{cos^2x}=2\)
\(\Leftrightarrow tanx\left(1+tan^2x\right)=2\)
\(\Leftrightarrow tan^3x+tanx-2=0\)
\(\Leftrightarrow\left(tanx-1\right)\left(tan^2x+tanx+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tan^2x+tanx+2=0\left(vn\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\frac{\pi}{4}+k\pi\)
7.
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế của pt cho \(cos^3x\)
\(\Leftrightarrow\frac{1}{cos^2x}=2tan^3x\)
\(\Leftrightarrow1+tan^2x=2tan^3x\)
\(\Leftrightarrow2tan^3x-tan^2x-1=0\)
\(\Leftrightarrow\left(tanx-1\right)\left(2tan^2x+tanx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\2tan^2x+tanx+1=0\left(vn\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\frac{\pi}{4}+k\pi\)
8.
\(\Leftrightarrow2cos^3x=3sinx-4sin^3x\)
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)
\(\Leftrightarrow2=\frac{3sinx}{cosx}.\frac{1}{cos^2x}-4tan^3x\)
\(\Leftrightarrow2=3tanx\left(1+tan^2x\right)-4tan^3x\)
\(\Leftrightarrow2=3tanx-tan^3x\)
\(\Leftrightarrow tan^3x-3tanx+2=0\)
\(\Leftrightarrow\left(tanx-1\right)^2\left(tanx+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=arctan\left(-2\right)+k\pi\end{matrix}\right.\)