cho \(a,b,c\inℝ\)thỏa mãn:\(a^2+2b^2=3c^2.CMR:\frac{1}{a}+\frac{2}{b}\ge\frac{3}{c}\)
1. Cho 3 số dương a, b, c thỏa mãn ab + bc + ca = 3abc
Tính GTNN của bt : \(M=\frac{2\left(a^2b^2+b^2c^2+c^2a^2\right)+abc}{a^2b^2c^2}\)
2. Cho a, b, c\(\inℝ^+\)thỏa mãn a + b + c = 4. Cmr BĐT sau luôn đúng :
\(10\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\ge\frac{4+5a}{4-a}+\frac{4+5b}{4-b}+\frac{4+5c}{4-c}\)
1. Ta có: \(ab+bc+ca=3abc\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
Đặt \(\hept{\begin{cases}\frac{1}{a}=m\\\frac{1}{b}=n\\\frac{1}{c}=p\end{cases}}\) khi đó \(\hept{\begin{cases}m+n+p=3\\M=2\left(m^2+n^2+p^2\right)+mnp\end{cases}}\)
Áp dụng Cauchy ta được:
\(\left(m+n-p\right)\left(m-n+p\right)\le\left(\frac{m+n-p+m-n+p}{2}\right)^2=m^2\)
\(\left(n+p-m\right)\left(n+m-p\right)\le n^2\)
\(\left(p-n+m\right)\left(p-m+n\right)\le p^2\)
\(\Rightarrow\left(m+n-p\right)\left(n+p-m\right)\left(p+m-n\right)\le mnp\)
\(\Leftrightarrow m^3+n^3+p^3+3mnp\ge m^2n+mn^2+n^2p+np^2+p^2m+pm^2\)
\(\Leftrightarrow\left(m+n+p\right)\left(m^2+n^2+p^2-mn-np-pm\right)+6mnp\ge mn\left(m-n\right)+np\left(n-p\right)+pm\left(p-m\right)\)
\(=mn\left(3-p\right)+np\left(3-m\right)+pm\left(3-n\right)\)
\(\Leftrightarrow3\left(m^2+n^2+p^2\right)-3\left(mn+np+pm\right)+6mnp\ge3\left(mn+np+pm\right)-3mnp\)
\(\Leftrightarrow3\left(m^2+n^2+p^2\right)+9mnp\ge6\left(mn+np+pm\right)\)
\(\Leftrightarrow xyz\ge\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)
\(\Rightarrow M\ge2\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)
\(=\frac{5}{3}\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)\)
\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m^2+n^2+p^2+2mn+2np+2pm\right)\)
\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m+n+p\right)^2\)
\(\ge\frac{4}{3}\cdot3+\frac{1}{3}\cdot3^2=4+3=7\)
Dấu "=" xảy ra khi: \(m=n=p=1\Leftrightarrow a=b=c=1\)
Cho a,b,c>0 thỏa mãn a+2b+3c=1
CMR: \(\frac{2ab}{a^2+4b^2}+\frac{6bc}{4b^2+9c^2}+\frac{3ac}{9c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}\right)\ge\frac{15}{4}\)
cho \(a,b,c\in R\) thỏa mãn:\(a^2+2b^2=3c^2\)
\(CMR:\frac{1}{a}+\frac{2}{b}\ge\frac{3}{c}\)
Bài này ngược dấu hay sao ý:
Ta dự đoán dấu "=" xảy ra tại a = b = c =1
Áp dụng BĐT Cauchy-Schwarz: \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\) (1)
Ta có: \(a^2+1\ge2a;2b^2+2\ge4b\Rightarrow a^2+2b^2+3=3c^2+3\ge2\left(a+2b\right)\)
\(\Rightarrow\frac{3c^2+3}{2}\ge a+2b\).Suy ra:\(\frac{9}{a+2b}\ge\frac{18}{3c^2+3}=\frac{6}{c^2+1}\) (2)
Ta sẽ c/m: \(\frac{6}{c^2+1}\ge\frac{3}{c}\).Ta có: \(VT=\frac{6}{c^2+1}=6\left(1-\frac{c^2}{c^2+1}\right)=6-\frac{6c^2}{c^2+1}\ge6-\frac{6c^2}{2c}=6-3c\) (3)
Ta sẽ c/m: \(6-3c\ge\frac{3}{c}\Leftrightarrow3c+\frac{3}{c}\le6\).Mặt khác,theo AM-GM
\(3c+\frac{3}{c}\ge2.\sqrt{3c.\frac{3}{c}}=2.3=6\Rightarrow\) mâu thuẫn?
a,b,c nó đã dương đâu sao bn dùng đc cô si vậy
cho a;b;c là các số thực dương thỏa mãn abc=1.CMR:\(\frac{1}{2a^3+3a+2}+\frac{1}{2b^3+3b+2}+\frac{1}{2c^3+3c+2}\ge\frac{3}{7}\)
như lời tth(box-toan-văn),mik đố tiếp:
cho a,b,c là các số thực thỏa mãn \(a^2+2b^2=3c^2.\)CMR:\(\frac{1}{a}+\frac{2}{b}\ge\frac{3}{c}\)
Ta có BĐT: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) (bạn tự c/m,không làm được thì bảo mình :v)
Ta có: \(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\) (1)
Mặt khác: Theo BĐT Bunhiacopxki:
\(\left(1a+2b\right)^2\le\left(1^2+\sqrt{2}^2\right)\left(a^2+\sqrt{2}^2b^2\right)=3.3c^2=9c^2\)
Suy ra \(a+2b\le3c\)
Mặt khác,theo đề bài \(a^2+2b^2=3c^2\Rightarrow a+2b=3c\)
Thay vào (1) suy ra \(VT\ge\frac{9}{a+2b}=\frac{9}{3c}=\frac{3}{c}^{\left(đpcm\right)}\)
cho a;b;c là các số thực dương thỏa mãn a+b+c=3.CMR:\(\sqrt{\frac{a}{3b^2+1}}+\sqrt{\frac{b}{3c^2+1}}+\sqrt{\frac{c}{3a^2+1}}\ge\frac{3}{2}\)
Sang học 24 tìm ai tên Perfect Blue nhé t làm bên đó rồi đưa link thì lỗi ==" , tìm tên đăng nhập springtime ấy
Cho a,b,c là các số dương thỏa mãn a+b+c=3. CMR
\(\frac{1}{2a^2+3}+\frac{1}{2b^2+3}+\frac{1}{2c^2+3}\ge\frac{3}{5}\)
Cho 3 số dương a;b;c thỏa mãn \(a+2b+3c\ge10\). Chứng minh rằng \(a+b+c+\frac{3a}{4}+\frac{9}{8b}+\frac{1}{c}\ge\frac{13}{2}\)
Câu này đã có người đăng rồi, bạn tìm lại sẽ thấy
1. Cho a,b,c > 0. Cmr :
\(\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\ge\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
2. Cho a,b,c > 0. Cmr :
\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\ge\frac{2}{3}\)
1.
\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)
\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
Dấu "=" khi \(a=b=c\)
2.
\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)
Dấu "=" khi \(a=b=c=d\)
Thục Trinh, tran nguyen bao quan, Phùng Tuệ Minh, Ribi Nkok Ngok, Lê Nguyễn Ngọc Nhi, Tạ Thị Diễm Quỳnh,
Nguyễn Huy Thắng, ?Amanda?, saint suppapong udomkaewkanjana
Help me!
Bài thứ hai đó áp dụng bđt cauchy showas là ra rồi sử dụng tch bắc cầu tệ.