Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trung
Xem chi tiết
Trúc Giang
23 tháng 6 2021 lúc 19:40

a)

\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Daaus = xayr ra khi: x = 2

b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)

Dấu = xảy ra khi x = 3

c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra khi

2x = y và y = 2

=> x = 1 và y = 2

๖ۣۜDũ๖ۣۜN๖ۣۜG
23 tháng 6 2021 lúc 19:41

a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)

Dấu "=" <=> x = 2

b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)

Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)

c) \(4x^2+2y^2-4xy-4y+1\)

\(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)

\(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

phamducluong
Xem chi tiết
Nguyễn Ngọc Thùy
Xem chi tiết
shitbo
25 tháng 6 2019 lúc 9:51

\(\text{x}^2+y^2-\text{x}+4y+5=\left(\text{x}^2-\text{x}+\frac{1}{4}\right)+\left(y^2+4y+4\right)+\frac{3}{4}=\left(\text{x}-\frac{1}{2}\right)^2+\left(y+2\right)^2+\frac{3}{4}\) 

\(\ge0+0+\frac{3}{4}=\frac{3}{4}\).Dâu"=" xayr ra khi: 

\(\Leftrightarrow\hept{\begin{cases}\text{x}-\frac{1}{2}=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\text{x}=\frac{1}{2}\\y=-2\end{cases}}\)

Big City Boy
Xem chi tiết
Thu Thao
25 tháng 12 2020 lúc 19:50

\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2-\left(y+1\right)^2+2y^2-4y+2028\)

\(=\left(x+y+1\right)^2-y^2-2x-1+2y^2-4y+2028\)

\(=\left(x+y+1\right)^2-6x+y^2+2027\)

\(=\left(x+y+1\right)+\left(y-3\right)^2+2018\ge2018\forall x;y\) (do...)

=> MinA = 2018 \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)

nguyen ngoc son
Xem chi tiết
Akai Haruma
2 tháng 1 2021 lúc 17:52

Lời giải:

$A=5x^2+y^2+4xy-2x-2y+2020$

$=(4x^2+y^2+4xy)+x^2-2x-2y+2020$

$=(2x+y)^2-2(2x+y)+x^2+2x+2020$

$=(2x+y)^2-2(2x+y)+1+(x^2+2x+1)+2018$

$=(2x+y-1)^2+(x+1)^2+2018\geq 2018$

Vậy GTNN của $A$ là $2018$. Giá trị này đạt tại $2x+y-1=0$ và $x+1=0$

Hay $x=-1; y=3$

nguyen ngoc son
Xem chi tiết
Diệu Linh Trần Thị
Xem chi tiết
Isolde Moria
10 tháng 8 2016 lúc 13:52

Ta có

\(C=\left(x^2+2.x.2y+\left(2y\right)^2\right)-\left(2x+4y\right)+10\)

\(\Rightarrow C=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

\(\Rightarrow C=5^2-2.5+10\)

\(\Rightarrow C=25-10+10=25\)

Duong Thi Nhuong
10 tháng 8 2016 lúc 16:12

\(C=x^2+4y^2-2x+10+4xy-4y\)

    \(=\left[x^2+2.x.2y+\left(2y\right)^2\right]-\left(2x+4y\right)+10\)

    \(=\left(x+2y\right)^2-2\left(x+2\right)+10\)

    \(=5^2-2.5+10\)

    \(=5^2-10+10\)

    \(=25-10+10\)

    \(=25\)

CHÚC BẠN HỌC TỐT !!!

Mai Anh Nguyễn
Xem chi tiết
Kirito Asuna
7 tháng 11 2021 lúc 15:25

Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3

= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1

= (x-3y)2 + (2x -1)2 + (y-1)2 +1

Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0

(2x -1)2 luôn lớn hơn hoặc bằng 0

(y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0

Khách vãng lai đã xóa
Darlingg🥝
7 tháng 11 2021 lúc 20:15

ta có:\(A=x^2+5y^2-4xy-2y+2x+2010\)

\(=x^2+4y^2+y^2-4xy-4y+2y+2x+1+1+2008\)

\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+\left(y^2+2x+1\right)+2008\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y+1\right)^2+2008\)

\(=\left(x-2y+1\right)^2+\left(y+1\right)^2+2008\)

Vì: (x-2y+1)2+(y+1)>0 với \(\forall x;y\)

do đó: (x-2y+1)2+(y+1)+2008 > 2008 với \(\forall x;y\)

Dấu "=" xảy ra khi x-2y+1=0 và y+1=0

ta có:

y+1=0=>y=0-1=>y=-1

thay y=-1 và x-2y+1=0

=>x-2.(-1)+1=0

=>x+2+1=0

=>x+2=-1

=>x=-1-2

=>x=-3

vậy \(A_{min}=2008\) khi x=-3 hoặc x=-1

Khách vãng lai đã xóa
Công chúa thủy tề
Xem chi tiết
tth_new
20 tháng 4 2019 lúc 9:22

Nãy lộn nhé,em làm lại:

\(D=\left(x^2+4xy+2x+4y^2+4y+1\right)+x^2+8\)

\(=\left[x^2+2x\left(2y+1\right)+\left(2y+1\right)^2\right]+x^2+8\)

\(=\left(x+2y+1\right)^2+x^2+8\ge8\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2=0\\x+2y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-\frac{1}{2}\end{cases}}\)

tth_new
20 tháng 4 2019 lúc 9:19

Dạng này mình không quen cho lắm nên không chắc nha!

\(D=\left(x^2+4xy+2x+4y^2+4y+1\right)+8\)

\(=\left[x^2+2x\left(2y+1\right)+\left(2y+1\right)\right]+8\)

\(=\left(x+2y+1\right)^2+8\ge8\)

Dấu "=" xảy ra khi \(\left(x+2y+1\right)^2=0\Leftrightarrow2y+1=-x\)

Mà \(\left(x+2y+1\right)^2=x^2+2x\left(2y+1\right)+\left(2y+1\right)\)

\(=x^2-2x^2-x=-x^2-x=0\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Thay vào D loại x = -1 suy ra x = 0 tức là y = -1/2