\(\left(\dfrac{2}{3}\right)^n\cdot\left(\dfrac{3}{4}\right)^n=\dfrac{1}{4}\)
Giài giúp mình với
Tính:
\(N=\left(0,25\right)^{-1}\cdot\left(\dfrac{1}{4}\right)^{-2}\cdot\left(\dfrac{4}{3}\right)^{-2}\cdot\left(\dfrac{5}{4}\right)^{-1}\cdot\left(\dfrac{2}{3}\right)^{-3}\)\(N=\left(0,25\right)^{-1}\cdot\left(\dfrac{1}{4}\right)^{-2}\cdot\left(\dfrac{4}{3}\right)^{-2}\cdot\left(\dfrac{5}{4}\right)^{-1}\cdot\left(\dfrac{2}{3}\right)^{-3}\)
\(N=4\cdot16\cdot\dfrac{9}{16}\cdot\dfrac{4}{5}\cdot\dfrac{27}{8}=4\cdot9\cdot\dfrac{4}{5}\cdot\dfrac{27}{8}\)
\(=\dfrac{16}{5}\cdot\dfrac{243}{8}=\dfrac{486}{5}\)
\(\left(\dfrac{1}{2}+1\right).\left(\dfrac{1}{3}+1\right).\left(\dfrac{1}{4}+1\right).\cdot\cdot\cdot.\left(\dfrac{1}{99}+1\right)\) làm ơn giúp mình với
A = (\(\dfrac{1}{2}\) + 1).(\(\dfrac{1}{3}\) + 1).(\(\dfrac{1}{4}\) + 1)...(\(\dfrac{1}{99}\) + 1)
A = \(\dfrac{1+2}{2}\).\(\dfrac{1+3}{3}\).\(\dfrac{1+4}{4}\)...\(\dfrac{1+99}{99}\)
A = \(\dfrac{3}{2}\).\(\dfrac{4}{3}\).\(\dfrac{5}{4}\)....\(\dfrac{100}{99}\)
A = \(\dfrac{100}{2}\) \(\times\) \(\dfrac{3.4.5...99}{3.4.5...99}\)
A = 50
\(\dfrac{\left(1^4+\dfrac{1}{4}\right)\left(3^4+\dfrac{1}{4}\right)\cdot...\cdot\left(2005^4+\dfrac{1}{4}\right)}{\left(2^4+\dfrac{1}{4}\right)\left(4^4+\dfrac{1}{4}\right)\cdot...\cdot\left(2006^4+\dfrac{1}{4}\right)}\).Viết kết quả dưới dạng phân số .Thanks!
Ta có: \(16a^4+4=16a^4+2.4a^2.2+4-16a^2\)
\(=\left(4a+2\right)^2-16a^2\)
\(=\left(4a+2\right)^2-16a^2\)
\(=\left(4a^2-4a+2\right).\left(4a^2+4a+2\right)\)
\(=\left[\left(2a-1\right)^2+1\right].\left[\left(2a+1\right)^2+1\right]\) ( a \(\in\) N* )
Do đó: \(16a^4+4=\left[\left(2a-1\right)^2+1\right].\left[\left(2a+1\right)^2+1\right]\) ( * )
Thay a lần lượt bằng 1, 2, 3, ..., 2014, ta có:
\(16.1^4+4=\left[\left(2.1-1\right)^2+1\right].\left[\left(2.1+1\right)^2+1\right]=\left(1^2+1\right).\left(3^2+1\right)\)
\(16.2^4+4=\left[\left(2.2-1\right)^2+1\right].\left[\left(2.2+1\right)^2+1\right]=\left(3^2+1\right).\left(5^2+1\right)\)
\(16.3^4+4=\left[\left(2.3-1\right)^2+1\right].\left[\left(2.3+1\right)^2+1\right]=\left(5^2+1\right).\left(7^2+1\right)\)
\(16.4^4+4=\left[\left(2.4-1\right)^2+1\right].\left[\left(2.4+1\right)^2+1\right]=\left(7^2+1\right).\left(9^2+1\right)\)
\(......\)
\(16.2005^4+4=\left[\left(2.2005-1\right)^2+1\right].\left[\left(2.2005+1\right)^2+1\right]=\left(4009^2+1\right).\left(4011^2+1\right)\)
\(16.2006^4+4=\left[\left(2.2006-1\right)^2+1\right].\left[\left(2.2006+1\right)^2+1\right]=\left(4011^2+1\right).\left(4013^2+1\right)\)
Đặt \(T=\dfrac{\left(1^4+\dfrac{1}{4}\right).\left(3^4+\dfrac{1}{4}\right)...\left(2005^4+\dfrac{1}{4}\right)}{\left(2^4+\dfrac{1}{4}\right).\left(4^4+\dfrac{1}{4}\right)...\left(2006^4+\dfrac{1}{4}\right)}\)
\(\Leftrightarrow T=\dfrac{16.\left(1^4+\dfrac{1}{4}\right).16\left(3^4+\dfrac{1}{4}\right)...16\left(2005^4+\dfrac{1}{4}\right)}{16.\left(2^4+\dfrac{1}{4}\right).16\left(4^4+\dfrac{1}{4}\right)...16\left(2006^4+\dfrac{1}{4}\right)}\)
\(\Leftrightarrow T=\dfrac{\left(16.1^4+4\right).\left(16.3^4+4\right)...\left(16.2005^4+4\right)}{\left(16.2^4+4\right).\left(16.4^4+4\right)...\left(16.2006^4+4\right)}\)
\(\Leftrightarrow T=\dfrac{\left(1^2+1\right).\left(3^2+1\right).\left(5^2+1\right)...\left(4009^2+1\right).\left(4011^2+1\right)}{\left(3^2+1\right).\left(5^2+1\right).\left(7^2+1\right)...\left(4011^2+1\right).\left(4013^2+1\right)}\)
\(\Leftrightarrow T=\dfrac{1^2+1}{4013^2+1}\)
\(\Leftrightarrow T=\dfrac{2}{4013^2+1}\)
Rút gọn biểu thức
\(\left(1-\dfrac{1}{1+2}\right)\cdot\left(1-\dfrac{1}{1+2+3}\right)\cdot\cdot\cdot\cdot\left(1-\dfrac{1}{1+2+3+4+5+.....+2006}\right)\)
Giúp em với ạ
\(\left(1-\dfrac{1}{1+2}\right)\cdot\left(1-\dfrac{1}{1+2+3}\right)\cdot\left(\dfrac{1}{1+2+3+...+2006}\right)\)
\(=\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{6}\right)\cdot\left\{\dfrac{1}{\left(2006+1\right)\left[\left(2006-1\right):1+1\right]}\right\}\)
\(=\dfrac{2}{3}\cdot\dfrac{5}{6}\cdot\dfrac{1}{2007\cdot2006}\)
\(=\dfrac{10}{18}\cdot\dfrac{1}{4026042}\)
\(=\dfrac{5}{9}\cdot\dfrac{1}{4026042}\)
\(=\dfrac{5}{36234378}\)
1/S=\(\left(1+\dfrac{1}{2}\right)\cdot\left(1+\dfrac{1}{3}\right)\cdot\left(1+\dfrac{1}{4}\right)\cdot...\cdot\left(1+\dfrac{1}{100}\right)\)
2/B=\(\left(1-\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}\right)\cdot...\cdot\left(1-\dfrac{1}{2007}\right)\)
3/C=\(\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot...\cdot\dfrac{100^2}{99\cdot101}\)
1: \(S=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{101}{100}=\dfrac{101}{2}\)
2: \(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2006}{2007}=\dfrac{1}{2007}\)
Tính giá trị biểu thức :
1. \(A=\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{9}-\dfrac{2}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{9}-\dfrac{4}{11}}\)
2. \(B=\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\)
3. \(C=\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot\dfrac{5^2}{4\cdot6}\cdot\dfrac{5^2}{4\cdot6}\)
4. \(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right)\cdot\left(\dfrac{2}{3}\cdot\dfrac{1}{4}\right)^2\)
5. Cho \(M=8\dfrac{2}{7}-\left(3\dfrac{4}{9}+4\dfrac{2}{7}\right)\) ; \(N=\left(10\dfrac{2}{9}+2\dfrac{3}{5}\right)-6\dfrac{2}{9}\). Tính \(P=M-N\)
6. \(E=10101\left(\dfrac{5}{111111}+\dfrac{5}{222222}-\dfrac{4}{3\cdot7\cdot11\cdot13\cdot37}\right)\)
7. \(F=\dfrac{\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{256}+\dfrac{3}{64}}{1-\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
8. \(G=\text{[}\dfrac{\left(6-4\dfrac{1}{2}\right):0,03}{\left(3\dfrac{1}{20}-2,65\right)\cdot4+\dfrac{2}{5}}-\dfrac{\left(0,3-\dfrac{3}{20}\right)\cdot1\dfrac{1}{2}}{\left(1,88+2\dfrac{3}{25}\right)\cdot\dfrac{1}{80}}\text{]}:\dfrac{49}{60}\)
9. \(H=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{4\cdot5\cdot6}+...+\dfrac{1}{98\cdot99\cdot100}\)
10. \(I=\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\dfrac{24}{25}\cdot...\cdot\dfrac{2499}{2500}\)
11. \(K=\left(-1\dfrac{1}{2}\right)\left(-1\dfrac{1}{3}\right)\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{999}\right)\)
12. \(L=1\dfrac{1}{3}+1\dfrac{1}{8}+1\dfrac{1}{15}...\) (98 thừa số)
13. \(M=-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{3}}}}\)
14. \(N=\dfrac{155-\dfrac{10}{7}-\dfrac{5}{11}+\dfrac{5}{23}}{403-\dfrac{26}{7}-\dfrac{13}{11}+\dfrac{13}{23}}\)
15. \(P=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{5}-1\right)...\left(\dfrac{1}{2001}-1\right)\)
16. \(Q=\left(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{2005\cdot2006}\right):\left(\dfrac{1}{1004\cdot2006}+\dfrac{1}{1005\cdot2005}+...+\dfrac{1}{2006\cdot1004}\right)\)
1. \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)
2. \(B=\dfrac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\dfrac{1}{5}\)
3.\(C=\dfrac{2^2.3^2.\text{4^2.5^2}.5^2}{1.2^2.3^2.4^2.5.6^2}=\dfrac{125}{36}\)
4.D=\(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right).\dfrac{4}{9}.\dfrac{1}{16}=\dfrac{19}{30}.\dfrac{1}{36}=\dfrac{19}{1080}\)
giúp mình với
A=\(\dfrac{1-0,5\cdot\left(3,84-2,4\right):0,8}{\dfrac{4}{5}-\left(1\dfrac{1}{3}-2\dfrac{1}{6}\right)-1,5}\)
mình cảm ơn
Ta có: \(A=\dfrac{1-0.5\cdot\left(3.84-2.4\right):0.8}{\dfrac{4}{5}-\left(1\dfrac{1}{3}-2\dfrac{1}{6}\right)-1.5}\)
\(=\dfrac{1-0.5\cdot1.44:0.8}{\dfrac{4}{5}-\left(\dfrac{4}{3}-\dfrac{13}{6}\right)-\dfrac{3}{2}}\)
\(=\dfrac{1-0.9}{\dfrac{4}{5}+\dfrac{5}{6}-\dfrac{3}{2}}=\dfrac{0.1}{\dfrac{2}{15}}=\dfrac{3}{4}\)
Giải:
A=1-0,5.(3,84-2,4):0,8 / 4/5-(1 1/3 - 2 1/6)-1,5
A=1-0,5.1,44:0.8 / 4/5-(4/3-13/6)-3/2
A=1-0.9 / 4/5-(-5/6)-3/2
A=0.1 / 2/15
A= 1/10 : 2/15
A=3/4
Chúc bạn học tốt!
CHo `M` `=` \(\dfrac{\left(\dfrac{3}{1\cdot4}+\dfrac{3}{2\cdot6}+\dfrac{3}{3\cdot8}+\dfrac{3}{4\cdot10}+...+\dfrac{3}{49\cdot100}\right)}{\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{5}\right)\left(1-\dfrac{1}{6}\right)\cdot\cdot\cdot\left(1-\dfrac{1}{100}\right)}\)
Chứng `M` có giá trị là 1 số nguyên
Hép - mi - pờ - li
CMR":
\(\dfrac{1}{3}\cdot\dfrac{4}{6}\cdot\dfrac{7}{9}\cdot.......\cdot\dfrac{\left(3n-2\right)}{3n}\cdot\dfrac{\left(3n+1\right)}{3n+3}< \dfrac{1}{3\sqrt{n+1}}\)
\(\dfrac{\left(\dfrac{2}{3}\right)^3\cdot\left(\dfrac{-3}{4}\right)^2\cdot\left(-1\right)^{2019}}{\left(\dfrac{2}{5}\right)^2\cdot\left(\dfrac{-5}{12}\right)^3}\)
Tính hộ mk với
\(=\dfrac{\dfrac{2^3\cdot3^2}{3^3\cdot4^2}\cdot\left(-1\right)}{\dfrac{2^2\cdot\left(-5\right)^3}{5^2\cdot2^6\cdot3^3}}=\dfrac{-\dfrac{1}{2}\cdot\dfrac{1}{3}}{-\dfrac{1}{2^4}\cdot5\cdot\dfrac{1}{3^3}}=\dfrac{1}{6}:\dfrac{5}{2^4\cdot3^3}\)
\(=\dfrac{1}{6}\cdot\dfrac{2^4\cdot3^3}{5}=\dfrac{2^3\cdot3^2}{5}=\dfrac{72}{5}\)