Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Cẩm Nhi
Xem chi tiết
Thanh Dii
Xem chi tiết
Phùng Kim Thanh
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 3 2022 lúc 1:11

\(2A=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{18.19.20}\)

\(\Rightarrow2A=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}\)

\(\Rightarrow2A=\dfrac{1}{1.2}-\dfrac{1}{19.20}< \dfrac{1}{1.2}\)

\(\Rightarrow2A< \dfrac{1}{2}\)

\(\Rightarrow A< \dfrac{1}{4}\) (đpcm)

Phùng Kim Thanh
Xem chi tiết
Tạ Tuấn Anh
1 tháng 3 2022 lúc 19:38

lỗi

Monkey.D.Luffy
1 tháng 3 2022 lúc 19:41

lỗi cực kỳ

Hày Cưi
Xem chi tiết
Trần Minh Hoàng
24 tháng 11 2018 lúc 14:41

Đây này: chứng minh $(a^m-1, a^n-1)=a^{(m,n)}-1$ - Số học - Diễn đàn Toán học

Chưa lên mạng thì hỏi làm gì?

omgomgomgomgomgomg
25 tháng 11 2018 lúc 3:14

<script>alert('hihi')</script>

Đào Kim Ngân
Xem chi tiết
✿ Hương ➻❥
25 tháng 9 2018 lúc 20:00

\(M=\left(\dfrac{1}{2+2\sqrt{a}}+\dfrac{1}{2-2\sqrt{a}}-\dfrac{a^2+1}{1-a^2}\right)\)

\(=\left(\dfrac{1}{2\left(1+\sqrt{a}\right)}+\dfrac{1}{2\left(1-\sqrt{a}\right)}-\dfrac{a^2+1}{1-a^2}\right).\dfrac{1+a}{a}\)

\(=\left(\dfrac{1-\sqrt{a}+1+\sqrt{a}}{2\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\dfrac{a^2+1}{\left(1-a\right)\left(1+a\right)}\right).\dfrac{1+a}{a}\)

\(=\left(\dfrac{1}{1-a}-\dfrac{a^2+1}{\left(1-a\right)\left(1+a\right)}\right).\dfrac{1+a}{a}\)

\(=\dfrac{1+a-a^2-1}{\left(1-a\right)\left(1+a\right)}.\dfrac{1+a}{a}\) (nghĩa là 1+a - (a^2 + 1 ) phá ngoặc thì đổi dấu như kia nhé.

✿ Hương ➻❥
25 tháng 9 2018 lúc 20:03

quên mk chưa lm xong đã gửi r

\(=\dfrac{-a^2+a}{\left(1-a\right)\left(1+a\right)}.\dfrac{1+a}{a}\)

\(\dfrac{a\left(1-a\right)}{\left(1-a\right)\left(1+a\right)}.\dfrac{1+a}{a}=1\)( chia hết cho nhau thì = 1 nhé

Vũ Tiền Châu
Xem chi tiết
Lightning Farron
25 tháng 9 2017 lúc 21:09

Áp dụng BĐT AM-GM ta có:

\(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b+1}{8}+\dfrac{c+1}{8}\)

\(\ge3\sqrt[3]{\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}\cdot\dfrac{b+1}{8}\cdot\dfrac{c+1}{8}}=\dfrac{3a}{4}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c+1}{8}+\dfrac{a+1}{8}\ge\dfrac{3b}{4};\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}+\dfrac{a+1}{8}+\dfrac{b+1}{8}\ge\dfrac{3c}{4}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT+\dfrac{2\left(a+b+c+3\right)}{8}\ge\dfrac{3\left(a+b+c\right)}{4}\)

\(\Leftrightarrow VT+\dfrac{2\left(3\sqrt[3]{abc}+3\right)}{8}\ge\dfrac{3\cdot3\sqrt[3]{abc}}{4}\Leftrightarrow VT\ge\dfrac{3}{4}=VP\)

Khi \(a=b=c=1\)

Nhật Minh
25 tháng 9 2017 lúc 20:51

khó

Nguyễn Lê Phước Thịnh
Xem chi tiết
Team Liên Quân
Xem chi tiết
Lightning Farron
4 tháng 8 2017 lúc 19:22

Đặt \(\left\{{}\begin{matrix}x=\dfrac{1}{a}\\y=\dfrac{1}{b}\\z=\dfrac{1}{c}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\) và BĐT cần chứng minh là:

\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{3}{2}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel và AM-GM ta có:

\(VT=\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\)

\(\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}=VP\)

Xảy ra khi \(x=y=z=1 \Rightarrow a=b=c=1\)

Team Liên Quân
4 tháng 8 2017 lúc 16:04

ai tick cho mik , mik tick lại cho !^__<hahanhớ giải câu hỏi nhé ! thanks