Chứng minh rằng, với a>1, ta có \(\left(a^m-1,a^m-1\right)=a^{\left(m,n\right)}-1\)
Cho a, b, c > 0 thoả mãn: \(a+b+c=\sqrt{a}+\sqrt{b}+\sqrt{c}=2\). Chứng minh rằng: \(\dfrac{\sqrt{a}}{a+1}+\dfrac{\sqrt{b}}{b+1}+\dfrac{\sqrt{c}}{c+1}=\dfrac{2}{\sqrt{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)
a, Cho a,b là số thực dương và ab<1. Chứng minh \(\dfrac{1}{1+a}+\dfrac{1}{1+b}\le\dfrac{2}{1+\sqrt{ab}}\)
b, Cho a,b,c là các số thực dương thõa mãn abc=1. Chứng minh \(\dfrac{a}{\left(a+1\right)\left(b+1\right)}+\dfrac{b}{\left(b+1\right)\left(c+1\right)}+\dfrac{c}{\left(c+1\right)\left(a+1\right)}\ge\dfrac{3}{4}\)
Cho các số dương a,b,c thỏa mãn \(\left\{{}\begin{matrix}a+b+c=2\\a^2+b^2+c^2=2\end{matrix}\right.\)
Chứng minh rằng: \(a\sqrt{\dfrac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+b\sqrt{\dfrac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}+c\sqrt{\dfrac{\left(1+a^2\right)\left(1+b^2\right)}{1+c^2}}=2\)
chứng minh rằng với mọi số dương a,b,c ta luôn có
\(\dfrac{1}{a\left(1+b\right)}\)+\(\dfrac{1}{b\left(1+c\right)}\)+\(\dfrac{1}{c\left(1+a\right)}\)≥\(\dfrac{3}{1+abc}\)
cho a, b, c là các số thực dương thảo mãn abc=1 chứng minh rằng \(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(a+1\right)\left(c+1\right)}+\frac{c}{\left(b+1\right)\left(a+1\right)}\ge\frac{3}{4}\)
Cho a,b,c là 3 số dương thỏa mãn abc = 1
Chứng minh
\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}\ge\dfrac{1}{4}\)
Chứng minh rằng biểu thức sau không phụ thuộc a, b, c: \(B=\dfrac{4a^2-1}{\left(a-b\right)\left(a-c\right)}+\dfrac{4b^2-1}{\left(b-c\right)\left(b-a\right)}+\dfrac{4c^2-1}{\left(c-a\right)\left(c-b\right)}\)
Cho a, b, c > 0. Chứng minh: \(\left(a+\dfrac{1}{b}-1\right)\left(b+\dfrac{1}{c}-1\right)+\left(b+\dfrac{1}{c}-1\right)\left(c+\dfrac{1}{a}-1\right)+\left(c+\dfrac{1}{a}-1\right)\left(a+\dfrac{1}{b}-1\right)\ge3\)