a, Cho a,b là số thực dương và ab<1. Chứng minh \(\dfrac{1}{1+a}+\dfrac{1}{1+b}\le\dfrac{2}{1+\sqrt{ab}}\)
b, Cho a,b,c là các số thực dương thõa mãn abc=1. Chứng minh \(\dfrac{a}{\left(a+1\right)\left(b+1\right)}+\dfrac{b}{\left(b+1\right)\left(c+1\right)}+\dfrac{c}{\left(c+1\right)\left(a+1\right)}\ge\dfrac{3}{4}\)
cho a,b,c là các số thực dương. Chứng minh rằng :
\(\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{a^2b}{c^3\left(a+b\right)}\ge\dfrac{1}{2}\left(a+b+c\right)\)
Cho a,b,c là 3 số dương thỏa mãn abc = 1
Chứng minh
\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}\ge\dfrac{1}{4}\)
Cho a, b, c > 0. Chứng minh: \(\left(a+\dfrac{1}{b}-1\right)\left(b+\dfrac{1}{c}-1\right)+\left(b+\dfrac{1}{c}-1\right)\left(c+\dfrac{1}{a}-1\right)+\left(c+\dfrac{1}{a}-1\right)\left(a+\dfrac{1}{b}-1\right)\ge3\)
Cho các số dương a,b,c thỏa mãn \(\left\{{}\begin{matrix}a+b+c=2\\a^2+b^2+c^2=2\end{matrix}\right.\)
Chứng minh rằng: \(a\sqrt{\dfrac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+b\sqrt{\dfrac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}+c\sqrt{\dfrac{\left(1+a^2\right)\left(1+b^2\right)}{1+c^2}}=2\)
\(\dfrac{1}{a\left(b+1\right)}+\dfrac{1}{b\left(c+1\right)}+\dfrac{1}{c\left(a+1\right)}>=\dfrac{3}{\sqrt[3]{abc}\left(1+\sqrt[3]{abc}\right)}\)
Chứng minh rằng biểu thức sau không phụ thuộc a, b, c: \(B=\dfrac{4a^2-1}{\left(a-b\right)\left(a-c\right)}+\dfrac{4b^2-1}{\left(b-c\right)\left(b-a\right)}+\dfrac{4c^2-1}{\left(c-a\right)\left(c-b\right)}\)
Cho a,b,c là các số thực dương thoả mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le3\)Chứng minh rằng \(\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}+\dfrac{1}{2}\left(ab+bc+ca\right)\ge3\)
Cho a,b,c>0.Chứng minh:
\(a\left(\dfrac{1}{b}+\dfrac{1}{c}\right)+b\left(\dfrac{1}{c}+\dfrac{1}{a}\right)+c\left(\dfrac{1}{b}+\dfrac{1}{a}\right)\ge6\)