Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tường Nguyễn Thế

Chứng minh rằng biểu thức sau không phụ thuộc a, b, c: \(B=\dfrac{4a^2-1}{\left(a-b\right)\left(a-c\right)}+\dfrac{4b^2-1}{\left(b-c\right)\left(b-a\right)}+\dfrac{4c^2-1}{\left(c-a\right)\left(c-b\right)}\)

Nguyễn Lê Phước Thịnh
18 tháng 6 2022 lúc 21:28

\(B=\dfrac{\left(4a^2-1\right)\left(b-c\right)-\left(4b^2-1\right)\left(a-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\dfrac{4c^2-1}{\left(a-c\right)\left(b-c\right)}\)

\(=\dfrac{4a^2b-4a^2c-b+c-4ab^2+4b^2c+a-c}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\dfrac{4ac^2-4bc^2-a+b}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)

\(=\dfrac{4a^2b-4a^2c+a-b-4ab^2+4b^2c+4ac^2-4bc^2-a+b}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)

\(=\dfrac{4a^2b-4ab^2-4a^2c+4ac^2-4bc^2+4b^2c}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)

\(=\dfrac{4a^2\left(b-c\right)+4bc\left(b-c\right)-4a\left(b^2-c^2\right)}{\left(b-c\right)\left(a-c\right)\left(a-b\right)}\)

\(=\dfrac{4a^2+4bc-4a\left(b+c\right)}{\left(a-c\right)\left(a-b\right)}\)

\(=\dfrac{4a^2-4ab+4bc-4ac}{\left(a-c\right)\left(a-b\right)}\)

\(=\dfrac{4a\left(a-b\right)-4c\left(a-b\right)}{\left(a-c\right)\left(a-b\right)}=4\)


Các câu hỏi tương tự
Yu gi Oh Magic
Xem chi tiết
Tiểu Bảo Bảo
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
Jum Võ
Xem chi tiết
Dung Phạm
Xem chi tiết
Hày Cưi
Xem chi tiết
Võ Đông Anh Tuấn
Xem chi tiết
Phạm Phương Anh
Xem chi tiết
Luyri Vũ
Xem chi tiết