Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Dung Phạm

Cho a,b,c là 3 số dương thỏa mãn abc = 1

Chứng minh

\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}\ge\dfrac{1}{4}\)

Akai Haruma
20 tháng 3 2019 lúc 14:41

Lời giải:

Áp dụng BĐT AM-GM ta có:

\(\frac{a^3}{(b+2)(c+3)}+\frac{b+2}{36}+\frac{c+3}{48}\geq 3\sqrt[3]{\frac{a^3}{36.48}}=\frac{a}{4}\)

Tương tự:\(\frac{b^3}{(c+2)(a+3)}+\frac{c+2}{36}+\frac{a+3}{48}\geq \frac{b}{4}\)

\(\frac{c^3}{(a+2)(b+3)}+\frac{a+2}{36}+\frac{b+3}{48}\geq \frac{c}{4}\)

Cộng theo vế các BĐT trên và rút gọn ta có:

\(\frac{a^3}{(b+2)(c+3)}+\frac{b^3}{(c+2)(a+3)}+\frac{c^3}{(a+2)(b+3)}\geq \frac{29}{144}(a+b+c)-\frac{17}{48}\)

Mà cũng theo AM-GM:

\(a+b+c\geq 3\sqrt[3]{abc}=3\)

\(\Rightarrow \frac{a^3}{(b+2)(c+3)}+\frac{b^3}{(c+2)(a+3)}+\frac{c^3}{(a+2)(b+3)}\geq \frac{29}{144}(a+b+c)-\frac{17}{48}\geq \frac{29}{144}.3-\frac{17}{48}=\frac{1}{4}\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$


Các câu hỏi tương tự
Yu gi Oh Magic
Xem chi tiết
Hày Cưi
Xem chi tiết
Học tốt
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
Ba Dao Mot Thoi
Xem chi tiết
Phạm
Xem chi tiết
GG boylee
Xem chi tiết
Võ Đông Anh Tuấn
Xem chi tiết
Big City Boy
Xem chi tiết