\(\dfrac{1}{a\left(a^2+8bc\right)}+\dfrac{1}{b\left(b^2+8ac\right)}+\dfrac{1}{c\left(c^2+8ab\right)}\le\dfrac{1}{3abc}\)
a, Cho a,b là số thực dương và ab<1. Chứng minh \(\dfrac{1}{1+a}+\dfrac{1}{1+b}\le\dfrac{2}{1+\sqrt{ab}}\)
b, Cho a,b,c là các số thực dương thõa mãn abc=1. Chứng minh \(\dfrac{a}{\left(a+1\right)\left(b+1\right)}+\dfrac{b}{\left(b+1\right)\left(c+1\right)}+\dfrac{c}{\left(c+1\right)\left(a+1\right)}\ge\dfrac{3}{4}\)
. Cho 3 số thực a, b, c thỏa mãn \(a^3+b^3+c^3=3abc\),Tính giá trị của biểu thức
\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
cho a,b,c là các số thực dương. Chứng minh rằng :
\(\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{a^2b}{c^3\left(a+b\right)}\ge\dfrac{1}{2}\left(a+b+c\right)\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{1}{a\left(b^2+bc+c^2\right)}+\dfrac{1}{b\left(c^2+ca+a^2\right)}+\dfrac{1}{c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}\)
Chứng minh rằng biểu thức sau không phụ thuộc a, b, c: \(B=\dfrac{4a^2-1}{\left(a-b\right)\left(a-c\right)}+\dfrac{4b^2-1}{\left(b-c\right)\left(b-a\right)}+\dfrac{4c^2-1}{\left(c-a\right)\left(c-b\right)}\)
Cho các số thực dương a, b, c thoả mãn \(a+b+c=1\). Chứng minh: \(\dfrac{a}{a+b^2}+\dfrac{b}{b+c^2}+\dfrac{c}{c+a^2}\le \dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Với mọi a,b,c . CMR
\(-\dfrac{1}{2}\le\dfrac{\left(a+b\right)\left(1-ab\right)}{\left(a^2+1\right)\left(b^2+1\right)}\le\dfrac{1}{2}\)
2. Cho a>0; b>0; c>0
Chứng minh bất đẳng thức (a+b+c)\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)\(\ge\) 9