Áp dụng BĐT: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(\text{luôn đúng}\right)\)
Ta có \(\dfrac{a}{a+1}+\dfrac{b}{b+1}+\dfrac{c}{c+1}\ge3\sqrt[3]{\dfrac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)
\(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}\ge3\sqrt[3]{\dfrac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)
Cộng VTV \(\Leftrightarrow3\ge\dfrac{3\left(\sqrt[3]{abc}+1\right)}{\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge\sqrt[3]{abc}+1\)
\(\Leftrightarrow VT^2=\sum\left[\dfrac{1}{a\left(b+1\right)}\right]^2\ge3\cdot\sum\dfrac{1}{ab\left(a+1\right)\left(b+1\right)}\\ \Leftrightarrow VT^2\ge3\cdot\dfrac{a^2+b^2+c^2+a+b+c}{abc\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge3\cdot\dfrac{a+b+c+ab+bc+ca}{abc\left(a+1\right)\left(b+1\right)\left(c+1\right)}\\ \Leftrightarrow VT^2\ge\dfrac{3}{abc}-\dfrac{3\left(abc+1\right)}{abc\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\dfrac{3}{abc}-\dfrac{3\left(abc+1\right)}{abc\left(1+\sqrt[3]{abc}\right)^3}\\ \Leftrightarrow VT^2\ge\dfrac{9}{\sqrt[3]{\left(abc\right)^2}\left(1+\sqrt[3]{abc}\right)^2}=VP^2\\ \LeftrightarrowĐpcm\)
Dấu \("="\Leftrightarrow a=b=c=1\)