Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Duong Tue Tam
Xem chi tiết
Dang Tung
16 tháng 6 2023 lúc 8:47

\(\left(a\right):2x-7\sqrt{x}+3=0\left(x\ge0\right)\\ < =>\left(2x-6\sqrt{x}\right)-\left(\sqrt{x}-3\right)=0\\ < =>2\sqrt{x}\left(\sqrt{x}-3\right)-\left(\sqrt{x}-3\right)=0\\ < =>\left(2\sqrt{x}-1\right)\left(\sqrt{x}-3\right)=0\\ =>\left[{}\begin{matrix}2\sqrt{x}-1=0\\\sqrt{x}-3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{4}\left(TM\right)\\x=9\left(TM\right)\end{matrix}\right.\)

\(\left(b\right):3\sqrt{x}+5< 6\\ < =>3\sqrt{x}< 1\\ < =>\sqrt{x}< \dfrac{1}{3}\\ < =>0\le x< \dfrac{1}{9}\)

\(\left(c\right):x-3\sqrt{x}-10< 0\\ < =>\left(x-5\sqrt{x}\right)+\left(2\sqrt{x}-10\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}-5\right)+2\left(\sqrt{x}-5\right)< 0\\ < =>\left(\sqrt{x}-5\right)\left(\sqrt{x}+2\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}-5< 0\\\sqrt{x}+2>0\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}0\le x< 25\\x\ge0\end{matrix}\right.< =>0\le x< 25\)

\(\left(d\right):x-5\sqrt{x}+6=0\left(x\ge0\right)\\ < =>\left(x-2\sqrt{x}\right)-\left(3\sqrt{x}-6\right)=0\\ < =>\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=0\\ < =>\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\\ =>\left[{}\begin{matrix}\sqrt{x}-3=0\\\sqrt{x}-2=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=9\\x=4\end{matrix}\right.\left(TM\right)\)

\(\left(e\right):x+5\sqrt{x}-14< 0\\ < =>\left(x+7\sqrt{x}\right)-\left(2\sqrt{x}+14\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}+7\right)-2\left(\sqrt{x}+7\right)< 0\\ < =>\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}+7>0\\\sqrt{x}-2< 0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x\ge0\\0\le x< 4\end{matrix}\right.< =>0\le x< 4\)

chang
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 8 2021 lúc 15:21

6: Để P>1 thì P-1>0

\(\Leftrightarrow\dfrac{\sqrt{a}-4-\sqrt{a}+2}{\sqrt{a}-2}>0\)

\(\Leftrightarrow\sqrt{a}-2< 0\)

hay a<4

Kết hợp ĐKXĐ, ta được: \(0\le a< 4\)

Nguyễn Lê Phước Thịnh
30 tháng 8 2021 lúc 0:20

5: Để P>0 thì \(x-4\sqrt{x}>0\)

\(\Leftrightarrow\sqrt{x}-4>0\)

hay x>16

Herimone
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 8 2021 lúc 21:33

1: Ta có: \(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}-9-\left(x-9\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

Để \(A=-\dfrac{1}{\sqrt{x}}\) thì \(x+\sqrt{x}=-\sqrt{x}+3\)

\(\Leftrightarrow x+2\sqrt{x}-3=0\)

\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow x=1\left(nhận\right)\)

2: Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-1;1;2;-2;4;-4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{2;4;5;1;7\right\}\)

\(\Leftrightarrow x\in\left\{16;25;1;49\right\}\)

Zing zing
Xem chi tiết
Kiều Vũ Linh
19 tháng 6 2023 lúc 9:30

√(x² + x + 1) = 1

⇔ x² + x + 1 = 1

⇔ x² + x = 0

⇔ x(x + 1) = 0

⇔ x = 0 hoặc x + 1 = 0

*) x + 1 = 0

⇔ x = -1

Vậy x = 0; x = -1

--------------------

√(x² + 1) = -3

Do x² ≥ 0 với mọi x

⇒ x² + 1 > 0 với mọi x

⇒ x² + 1 = -3 là vô lý

Vậy không tìm được x thỏa mãn yêu cầu

--------------------

√(x² - 10x + 25) = 7 - 2x

⇔ √(x - 5)² = 7 - 2x

⇔ |x - 5| = 7 - 2x  (1)

*) Với x ≥ 5, ta có 

(1) ⇔ x - 5 = 7 - 2x

⇔ x + 2x = 7 + 5

⇔ 3x = 12

⇔ x = 4 (loại)

*) Với x < 5, ta có:

(1) ⇔ 5 - x = 7 - 2x

⇔ -x + 2x = 7 - 5

⇔ x = 2 (nhận)

Vậy x = 2

--------------------

√(2x + 5) = 5

⇔ 2x + 5 = 25

⇔ 2x = 20

⇔ x = 20 : 2

⇔ x = 10

Vậy x = 10

-------------------

√(x² - 4x + 4) - 2x +5 = 0

⇔ √(x - 2)² - 2x + 5 = 0

⇔ |x - 2| - 2x + 5 = 0 (2)

*) Với x ≥ 2, ta có: 

(2) ⇔  x - 2 - 2x + 5 = 0

⇔ -x + 3 = 0

⇔ x = 3 (nhận)

*) Với x < 2, ta có:

(2) ⇔ 2 - x - 2x + 5 = 0

⇔ -3x + 7 = 0

⇔ 3x = 7

⇔ x = 7/3 (loại)

Vậy x = 3

Gia Huy
18 tháng 6 2023 lúc 22:58

1)

\(\Leftrightarrow x^2+x+1=1^2=1\\ \Leftrightarrow x^2+x=0\\ \Leftrightarrow x\left(x+1\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

2) Do \(x^2+1>0\forall x\) nên \(x\in\varnothing\)

3) 

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=7-2x\\ \Leftrightarrow\left|x-5\right|=7-2x\)

Nếu \(x\ge5\) thì

\(\Leftrightarrow x-5-7+2x=0\\ \Leftrightarrow3x-12=0\\ \Leftrightarrow3x=12\\ \Rightarrow x=4\)

=> Loại trường hợp này

Nếu \(x< 5\) thì

\(\Leftrightarrow5-x-7+2x=0\\ \Leftrightarrow x-2=0\\ \Rightarrow x=2\)

=> Nhận trường hợp này

Vậy x = 2 

4)

\(\Leftrightarrow2x+5=5^2=25\\ \Leftrightarrow2x=25-5=20\\ \Rightarrow x=\dfrac{20}{2}=10\)

5)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}-2x+5=0\\ \Leftrightarrow\left|x-2\right|-2x+5=0\)

Nếu \(x\ge2\) thì

\(\Leftrightarrow x-2-2x+5=0\\ \Leftrightarrow3-x=0\\ \Rightarrow x=3\)

=> Nhận trường hợp này

Nếu \(x< 2\) thì

\(\Leftrightarrow2-x-2x+5=0\\ \Leftrightarrow7-3x=0\\ \Leftrightarrow3x=7\\ \Rightarrow x=\dfrac{7}{3}\)

=> Loại trường hợp này

Vậy x = 3

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
16 tháng 9 2023 lúc 21:29

a) |x| = 4

\(\left[ {_{x =  - 4}^{x = 4}} \right.\)

Vậy \(x \in \{ 4; - 4\} \)

b) |x| = \(\sqrt 7 \)

\(\left[ {_{x =  - \sqrt 7 }^{x = \sqrt 7 }} \right.\)

Vậy \(x \in \{ \sqrt 7 ; - \sqrt 7 \} \)

c) ) |x+5| = 0

x+5 = 0

x = -5

Vậy x = -5

d) \(\left| {x - \sqrt 2 } \right|\) = 0

x - \(\sqrt 2 \) = 0

x = \(\sqrt 2 \)

Vậy x =\(\sqrt 2 \)

Triết Phan
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 12 2021 lúc 7:14

\(a,P=\dfrac{\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{2-\sqrt{x}}{\sqrt{x}}=\dfrac{-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{-2}{\sqrt{x}+2}\\ P=-\dfrac{3}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\\ \Leftrightarrow3\sqrt{x}+6=10\Leftrightarrow\sqrt{x}=\dfrac{4}{3}\Leftrightarrow x=\dfrac{16}{9}\left(tm\right)\)

Tử Nguyệt Hàn
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 10 2021 lúc 15:57

ĐKXĐ: \(x\ge0\)

\(\dfrac{-3\sqrt{x}-5}{\sqrt{x}+1}=0\)

\(\Leftrightarrow-3\sqrt{x}-5=0\)

\(\Leftrightarrow\sqrt{x}=-\dfrac{5}{3}< 0\)

\(\Rightarrow\) Không tồn tại x thỏa mãn

Ngưu Kim
Xem chi tiết
pansak9
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2023 lúc 20:31

\(2P=2\sqrt{x}+5\)

=>\(\dfrac{2\sqrt{x}+2}{\sqrt{x}}=2\sqrt{x}+5\)

=>\(2x+5\sqrt{x}=2\sqrt{x}+2\)

=>\(2x+3\sqrt{x}-2=0\)

=>\(\left(\sqrt{x}+2\right)\left(2\sqrt{x}-1\right)=0\)

=>\(2\sqrt{x}-1=0\)

=>\(\sqrt{x}=\dfrac{1}{2}\)

=>x=1/4(nhận)

phamthiminhanh
Xem chi tiết
Yeutoanhoc
26 tháng 6 2021 lúc 16:14

`a)sqrt{x^2-2x+1}=2`

`<=>sqrt{(x-1)^2}=2`

`<=>|x-1|=2`

`**x-1=2<=>x=3`

`**x-1=-1<=>x=-1`.

Vậy `S={3,-1}`

`b)sqrt{x^2-1}=x`

Điều kiện:\(\begin{cases}x^2-1 \ge 0\\x \ge 0\\\end{cases}\)

`<=>` \(\begin{cases}x^2 \ge 1\\x \ge 0\\\end{cases}\)

`<=>x>=1`

`pt<=>x^2-1=x^2`

`<=>-1=0` vô lý

Vậy pt vô nghiệm

`c)sqrt{4x-20}+3sqrt{(x-5)/9}-1/3sqrt{9x-45}=4(x>=5)`

`pt<=>sqrt{4(x-5)}+sqrt{9*(x-5)/9}-sqrt{(9x-45)*1/9}=4`

`<=>2sqrt{x-5}+sqrt{x-5}-sqrt{x-5}=4`

`<=>2sqrt{x-5}=4`

`<=>sqrt{x-5}=2`

`<=>x-5=4`

`<=>x=9(tmđk)`

Vậy `S={9}.`

`d)x-5sqrt{x-2}=-2(x>=2)`

`<=>x-2-5sqrt{x-2}+4=0`

Đặt `a=sqrt{x-2}`

`pt<=>a^2-5a+4=0`

`<=>a_1=1,a_2=4`

`<=>sqrt{x-2}=1,sqrt{x-2}=4`

`<=>x_1=3,x_2=18`,

`e)2x-3sqrt{2x-1}-5=0`

`<=>2x-1-3sqrt{2x-1}-4=0`

Đặt `a=sqrt{2x-1}(a>=0)`

`pt<=>a^2-3a-4=0`

`a-b+c=0`

`<=>a_1=-1(l),a_2=4(tm)`

`<=>sqrt{2x-1}=4`

`<=>2x-1=16`

`<=>x=17/2(tm)`

Vậy `S={17/2}`

Akai Haruma
26 tháng 6 2021 lúc 16:15

d.

ĐKXĐ: $x\geq 2$. Đặt $\sqrt{x-2}=a(a\geq 0)$ thì pt trở thành:

$a^2+2-5a=-2$

$\Leftrightarrow a^2-5a+4=0$

$\Leftrightarrow (a-1)(a-4)=0$

$\Rightarrow a=1$ hoặc $a=4$

$\Leftrightarrow \sqrt{x-2}=1$ hoặc $\sqrt{x-2}=4$

$\Leftrightarrow x=3$ hoặc $x=18$ (đều thỏa mãn)

e. ĐKXĐ: $x\geq \frac{1}{2}$

Đặt $\sqrt{2x-1}=a(a\geq 0)$ thì pt trở thành:

$a^2+1-3a-5=0$

$\Leftrightarrow a^2-3a-4=0$

$\Leftrightarrow (a+1)(a-4)=0$

Vì $a\geq 0$ nên $a=4$

$\Leftrightarrow \sqrt{2x-1}=4$

$\Leftrightarrow x=\frac{17}{2}$

Akai Haruma
26 tháng 6 2021 lúc 16:12

a.

$\sqrt{x^2-2x+1}=2$

$\Leftrightarrow \sqrt{(x-1)^2}=2$

$\Leftrightarrow |x-1|=2$

$\Rightarrow x-1=\pm 2$

$\Leftrightarrow x=3$ hoặc $x=-1$ (đều thỏa mãn)

b. ĐKXĐ: $x\geq 1$ hoặc $x\leq -1$

PT \(\Rightarrow \left\{\begin{matrix} x\geq 0\\ x^2-1=x^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ 1=0\end{matrix}\right.\) (vô lý)

Vậy pt vô nghiệm

c. ĐKXĐ: $x\geq 5$

PT $\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=4$

$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4$

$\Leftrightarrow 2\sqrt{x-5}=4$

$\Leftrightarrow \sqrt{x-5}=2$

$\Leftrightarrow x=2^2+5=9$ (thỏa mãn)