\(2P=2\sqrt{x}+5\)
=>\(\dfrac{2\sqrt{x}+2}{\sqrt{x}}=2\sqrt{x}+5\)
=>\(2x+5\sqrt{x}=2\sqrt{x}+2\)
=>\(2x+3\sqrt{x}-2=0\)
=>\(\left(\sqrt{x}+2\right)\left(2\sqrt{x}-1\right)=0\)
=>\(2\sqrt{x}-1=0\)
=>\(\sqrt{x}=\dfrac{1}{2}\)
=>x=1/4(nhận)
\(2P=2\sqrt{x}+5\)
=>\(\dfrac{2\sqrt{x}+2}{\sqrt{x}}=2\sqrt{x}+5\)
=>\(2x+5\sqrt{x}=2\sqrt{x}+2\)
=>\(2x+3\sqrt{x}-2=0\)
=>\(\left(\sqrt{x}+2\right)\left(2\sqrt{x}-1\right)=0\)
=>\(2\sqrt{x}-1=0\)
=>\(\sqrt{x}=\dfrac{1}{2}\)
=>x=1/4(nhận)
cho biểu thức \(P=\left(\dfrac{3\sqrt{x}-1}{x-1}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{1}{x+\sqrt{x}}\) với x>0 và x≠1. tìm x để 2P - x = 3
Rút gọn biểu thức sau :
A =\(\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
a/C/m A = \(\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b/ Tìm cá giá trị của x để 2P = 2\(\sqrt{x}+5\)
Cho biểu thức A = \(\dfrac{\sqrt{x}+2}{\sqrt{x}-3};B=\dfrac{\sqrt{x}+5}{\sqrt{x}+1}+\dfrac{\sqrt{x}-7}{1-x}\) với x ≥ 0;x ≠ 1;x ≠ 9
a, Tính giá trị biểu thức A khi x = 16
b,Chứng minh rằng: B = \(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)
c, Tìm các giá trị x để \(\dfrac{4A}{A}\le\dfrac{x}{\sqrt{x}-3}\)
cho biểu thức B= \(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x-1}-\dfrac{1}{\sqrt{x}+1}\) rút gọn và tính gtri của biểu thức B khi x=6-\(2\sqrt{5}\)
1/ Cho hai biểu thức A=\(\dfrac{\sqrt{x}-2}{\sqrt{x}}\) và B=\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\)+ \(\dfrac{\sqrt{x}}{\sqrt{x}-3}\)-\(\dfrac{2x}{x-9}\) với x>0 , x≠9
a) Rút gọn biểu thức B
b) Tìm các giá trị nguyên của x để P<0 với P=A.B
Cho biểu thức:
A = \(\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)với x > 0; x ≠ 1
a) Chứng minh: A = \(\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b) Tìm x để 2A = \(2\sqrt{x}+5\)
5. P = \(\dfrac{x-4\sqrt{x}}{\sqrt{x}+2}\) tìm để P > 0 với x ≥0, x ≠4
6. P = \(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) tìm a để P > 1 với a ≥ 0, x ≠ 1
Cho 2 biểu thức A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\) và B\(\dfrac{3}{\sqrt{x}+5}+\dfrac{20-2\sqrt{x}}{x-25}\) với x ≥ 0 ; x≠ 25
a) Tính giá trị biểu thức khi x = 9. Chứng minh rằng B =\(\dfrac{1}{\sqrt{x}+5}\)
b) Tìm tất cả các giá trị của x để A = B .|x-4|
I .cho C= \(\frac{1}{2\sqrt{x}-2}-\frac{1}{2\sqrt{x}+2}+\frac{\sqrt{x}}{1-x}\)
a, rút gọn C
b, tính C vs x=\(\frac{4}{9}\)
c, tìm x để GTTĐ của C =\(\frac{1}{3}\)
II. cho P = \(\hept{\frac{\sqrt{x}-2}{x-1}}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1})X\frac{\left(1-x\right)^2}{2}\)
a, rút gọn P
b, chứng minh rằng nếu 0<x<1 thì P>0
III. Cho Q= \(\frac{2\sqrt{x-9}}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a, rút gọn Q
b, tìm các gtri x nguyên để Q có gtri nguyên