a) ĐKXĐ: \(x\ge0;\ne1\)
\(A=\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}\) (đpcm)
Vậy \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}}\).
b) Ta có:
\(2P=2\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=2\sqrt{x}+5\)
\(\Rightarrow2\sqrt{x}+2=2x+5\sqrt{x}\)
\(\Leftrightarrow2x+3\sqrt{x}-2=0\)
\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{1}{2}\\\sqrt{x}=-2\left(\text{loại}\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{1}{4}\left(TM\right)\)
Vậy để \(2P=2\sqrt{x}+5\) thì \(x=\dfrac{1}{4}\).
a: \(A=\dfrac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b: P là biểu thức nào vậy bạn?