a: \(B=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}+\frac{\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}+\frac{\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)+\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-1-x+4+\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}=\frac{1}{\sqrt{x}-2}\)