\(P=\left(\dfrac{3\sqrt{x}-1}{x-1}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{1}{x+\sqrt{x}}\)
\(P=\left(\dfrac{3\sqrt{x}-1-\left(\sqrt{x}+1\right)}{x-1}\right):\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(P=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right).\left[\sqrt{x}\left(\sqrt{x}+1\right)\right]\)
\(P=\dfrac{2x}{\sqrt{x}-1}\)
ta có 2P-x=3
⇔\(2\cdot\dfrac{2x}{\sqrt{x}-1}-x=3\)
⇔\(4x-x\left(\sqrt{x}-1\right)=3\left(\sqrt{x}-1\right)\)
⇔\(5x-x\sqrt{x}-3\sqrt{x}+3=0\)