Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trần Lam Trúc
Xem chi tiết
Nguyễn Huy Tú
19 tháng 7 2021 lúc 10:53

a, Ta có : 

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\Rightarrow\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{4+9-4}=\dfrac{50-5}{9}=5\)

\(\Rightarrow x=11;y=17;z=23\)

b, Đặt \(\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\Rightarrow xyz=810\)

\(\Rightarrow2k.3k.5k=810\Leftrightarrow30k^3=810\Leftrightarrow k^3=27\Leftrightarrow k=3\)

\(\Rightarrow x=6;y=9;z=15\)

Trúc Giang
19 tháng 7 2021 lúc 10:58

a) Ta có: \(\dfrac{x-1}{2}=\dfrac{2x-2}{4};\dfrac{y-2}{3}=\dfrac{3y-6}{9};\dfrac{z-3}{4}\)

Áp dụng t/c dtsbn:

\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x-2+3y-6-z+3}{4+9-4}=5\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=5\\\dfrac{y-2}{3}=5\\\dfrac{z-3}{4}=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=12\end{matrix}\right.\)

b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)

xyz = 810

=> 2k.3k.5k = 810

=> k = 3

\(\Rightarrow\left\{{}\begin{matrix}x=6\\y=9\\z=15\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
19 tháng 7 2021 lúc 11:45

a) Ta có: \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)

nên \(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)

mà 2x+3y-z=50

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{4+9-4}=\dfrac{50-5}{9}=5\)

Do đó:

\(\left\{{}\begin{matrix}x-1=10\\y-2=15\\z-3=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=23\end{matrix}\right.\)

b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)

Ta có: xyz=810

\(\Leftrightarrow30k^3=810\)

\(\Leftrightarrow k^3=27\)

\(\Leftrightarrow k=3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot3=6\\y=3k=3\cdot3=6\\z=5k=5\cdot3=15\end{matrix}\right.\)

Lê Thị Lam
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 9 2023 lúc 22:34

\(\dfrac{4}{x+1}=\dfrac{2}{y-2}=\dfrac{3}{z+2}\)

=>\(\dfrac{x+1}{4}=\dfrac{y-2}{2}=\dfrac{z+2}{3}=k\)

=>x+1=4k; y-2=2k; z+2=3k

=>x=4k-1; y=2k+2; z=3k-2

xyz=12

=>(4k-1)(2k+2)(3k-2)=12

=>(4k-1)(k+1)(3k-2)=6

=>(4k-1)(3k^2-2k+3k-2)=6

=>(3k^2+k-2)(4k-1)=6

=>12k^3-3k^2+4k^2-k-8k+2-6=0

=>12k^3+k^2-9k-7=0

=>

\(\dfrac{4}{x+1}=\dfrac{2}{y-2}=\dfrac{3}{z+2}\)

=>\(\dfrac{x+1}{4}=\dfrac{y-2}{2}=\dfrac{z+2}{3}=k\)

=>x+1=4k; y-2=2k; z+2=3k

=>x=4k-1; y=2k+2; z=3k-2

xyz=12

=>(4k-1)(2k+2)(3k-2)=12

=>(4k-1)(k+1)(3k-2)=6

=>(4k-1)(3k^2-2k+3k-2)=6

=>(3k^2+k-2)(4k-1)=6

=>12k^3-3k^2+4k^2-k-8k+2-6=0

=>12k^3+k^2-9k-4=0

=>k=1

=>x=4k-1=3; y=2k+2=4; z=3k-2=3-2=1

Moon
Xem chi tiết
Akai Haruma
30 tháng 7 2021 lúc 0:57

Phân thức số 2 có thật sự là $\frac{z}{y-2}$ không bạn? Bạn xem lại đề.

Bánh Trôi
Xem chi tiết
Kirigaya Kazuto
13 tháng 6 2017 lúc 19:35

b, \(\dfrac{x^3+y^3}{6}\) = \(\dfrac{x^3-2y^3}{4}\)và x6.y6=64

=>(x3+y3 ).4=(x3-2y3).6

=>4x3+4y3=6x3-12y3

=> 4y3 + 12y3= 6x3-4x3

=> 15y3=2x3

Làm được thế này thoy

0o0^^^Nhi^^^0o0
Xem chi tiết
Trần Minh Hoàng
21 tháng 10 2017 lúc 10:16

a) Ta có:

\(x+y+z=49\Rightarrow12x+12y+12z=588\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}=\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}=\dfrac{12x+12y+12z}{18+16+15}=\dfrac{588}{49}=12\)

\(\Rightarrow\left\{{}\begin{matrix}x=12.3:2\\y=12.4:3\\z=12.5:4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=15\end{matrix}\right.\)

Diệp Vi Vi
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 11 2018 lúc 20:21

\(x-y+100=z\Rightarrow x-y-z=-100\)

\(\dfrac{x}{4}=\dfrac{y}{3}\Rightarrow\dfrac{x}{20}=\dfrac{y}{15};\dfrac{y}{5}=\dfrac{z}{3}\Rightarrow\dfrac{y}{15}=\dfrac{z}{9}\)

\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)

\(\Rightarrow x=20.25=500;y=15.25=375;z=9.25=225\)

b/ \(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}\)

\(\Rightarrow\dfrac{3x-3}{6}=\dfrac{4y+12}{16}=\dfrac{5z-25}{30}=\dfrac{5z-25-4y-12-3x+3}{30-16-6}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=2\\\dfrac{y+3}{4}=2\\\dfrac{z-5}{6}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=5\\y=5\\z=17\end{matrix}\right.\)

c/ \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=a\Rightarrow\left\{{}\begin{matrix}x=2a\\y=3a\\z=5a\end{matrix}\right.\) \(\Rightarrow xyz=2a.3a.5a=30a^3=-30\Rightarrow a^3=-1\Rightarrow a=-1\)

\(\Rightarrow\left\{{}\begin{matrix}x=2a=-2\\y=3a=-3\\z=5a=-5\end{matrix}\right.\)

d/ \(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}\Rightarrow\dfrac{2x}{2,2}=\dfrac{y}{1,3}=\dfrac{z}{1,4}=\dfrac{2x-y}{2,2-1,3}=\dfrac{5,5}{0,9}=\dfrac{55}{9}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1,1.55}{9}=\dfrac{121}{18}\\y=\dfrac{1,3.55}{9}=\dfrac{143}{18}\\z=\dfrac{1,4.55}{9}=\dfrac{77}{9}\end{matrix}\right.\) Nghi ngờ bạn chép đề câu này sai, số xấu quá

Thuyet Hoang
Xem chi tiết
Thuyet Hoang
16 tháng 10 2021 lúc 9:40

1.Tìm x, y.

2.TÌM x, y, z.

3.TÌM x, y, z.

Lấp La Lấp Lánh
16 tháng 10 2021 lúc 9:52

1) \(\dfrac{x}{3}=\dfrac{y}{4}=k\)\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)

\(\Rightarrow xy=12k^2=192\Rightarrow k=\pm4\)

\(\Rightarrow\left\{{}\begin{matrix}x=\pm12\\y=\pm16\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=12\\y=16\end{matrix}\right.\\\left\{{}\begin{matrix}x=-12\\y=-16\end{matrix}\right.\end{matrix}\right.\)

2) Áp dụng t/c dtsbn:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{-90}{9}=-10\)

\(\Rightarrow\left\{{}\begin{matrix}x=\left(-10\right).2=-20\\y=\left(-10\right).3=-30\\z=\left(-10\right).5=-50\end{matrix}\right.\)

3) Áp dụng t/c dtsbn:

\(\dfrac{x}{3}=\dfrac{y}{8}=\dfrac{z}{5}=\dfrac{3x}{9}=\dfrac{2z}{10}=\dfrac{3x+y-2z}{9+8-10}=\dfrac{14}{7}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.8=16\\z=2.5=10\end{matrix}\right.\)

dream
Xem chi tiết
Minh Hiếu
24 tháng 9 2021 lúc 15:47

a) \(2x=5y\)\(x=\dfrac{5}{2}y\)\(xy=\dfrac{5}{2}y^2\)

Thay \(xy=250\), ta có:

\(250=\dfrac{5}{2}y^2\)

\(y^2=100\)\(y=+-10\)

+) \(y=10\text{⇒}x=250:10=25\)

+) \(y=-10\text{⇒}x=250:-10=-25\)

Nguyễn Hoàng Minh
24 tháng 9 2021 lúc 15:48

\(a,2x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}=k\\ \Rightarrow x=5k;y=2k\\ xy=250\Rightarrow5k\cdot2k=250\Rightarrow k^2=25\Rightarrow\left[{}\begin{matrix}k=5\\k=-5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=25;y=10\\x=-25;y=-10\end{matrix}\right.\\ b,\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{4}=a\Rightarrow x=3a;y=2a;z=4a\\ xyz=192\Rightarrow24a^3=192\Rightarrow a^3=8\Rightarrow a=2\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=4\\z=8\end{matrix}\right.\\ c,\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{z}{-3}=q\Rightarrow x=5q;y=2q;z=-3q\\ xyz=240\Rightarrow-30q^3=240\Rightarrow q^3=-8\Rightarrow q=-2\\ \Rightarrow\left\{{}\begin{matrix}x=-10\\y=-4\\z=6\end{matrix}\right.\)

Vũ tũm tĩm
24 tháng 9 2021 lúc 15:50

a. \(\left\{{}\begin{matrix}2x=5y\\xy=250\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-5y=0\\2xy=500\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2xy-5y^2=0\\2xy=500\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y^2=500\\2xy=500\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=10\\x=25\end{matrix}\right.\)

Hồ Lê Thiên Đức
Xem chi tiết
Trần Tuấn Hoàng
24 tháng 5 2022 lúc 10:15

\(x,y,z>0\)

Áp dụng BĐT Caushy cho 3 số ta có:

\(x^3+y^3+z^3\ge3\sqrt[3]{x^3y^3z^3}=3xyz\ge3.1=3\)

\(P=\dfrac{x^3-1}{x^2+y+z}+\dfrac{y^3-1}{x+y^2+z}+\dfrac{z^3-1}{x+y+z^2}\)

\(=\dfrac{\left(x^3-1\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)}+\dfrac{\left(y^3-1\right)^2}{\left(x+y^2+z\right)\left(y^3-1\right)}+\dfrac{\left(z^3-1\right)^2}{\left(x+y+z^2\right)\left(x^3-1\right)}\)

Áp dụng BĐT Caushy-Schwarz ta có:

\(P\ge\dfrac{\left(x^3+y^3+z^3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}\)

\(\ge\dfrac{\left(3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}=0\)

\(P=0\Leftrightarrow x=y=z=1\)

Vậy \(P_{min}=0\)