\(\dfrac{4}{x+1}=\dfrac{2}{y-2}=\dfrac{3}{z+2}\)
=>\(\dfrac{x+1}{4}=\dfrac{y-2}{2}=\dfrac{z+2}{3}=k\)
=>x+1=4k; y-2=2k; z+2=3k
=>x=4k-1; y=2k+2; z=3k-2
xyz=12
=>(4k-1)(2k+2)(3k-2)=12
=>(4k-1)(k+1)(3k-2)=6
=>(4k-1)(3k^2-2k+3k-2)=6
=>(3k^2+k-2)(4k-1)=6
=>12k^3-3k^2+4k^2-k-8k+2-6=0
=>12k^3+k^2-9k-7=0
=>
\(\dfrac{4}{x+1}=\dfrac{2}{y-2}=\dfrac{3}{z+2}\)
=>\(\dfrac{x+1}{4}=\dfrac{y-2}{2}=\dfrac{z+2}{3}=k\)
=>x+1=4k; y-2=2k; z+2=3k
=>x=4k-1; y=2k+2; z=3k-2
xyz=12
=>(4k-1)(2k+2)(3k-2)=12
=>(4k-1)(k+1)(3k-2)=6
=>(4k-1)(3k^2-2k+3k-2)=6
=>(3k^2+k-2)(4k-1)=6
=>12k^3-3k^2+4k^2-k-8k+2-6=0
=>12k^3+k^2-9k-4=0
=>k=1
=>x=4k-1=3; y=2k+2=4; z=3k-2=3-2=1