1: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{0,3}=\dfrac{y}{0.2}=\dfrac{z}{0.1}=\dfrac{x-y}{0.3-0.2}=\dfrac{1}{0.1}=10\)
Do đó: x=3; y=2; z=1
1: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{0,3}=\dfrac{y}{0.2}=\dfrac{z}{0.1}=\dfrac{x-y}{0.3-0.2}=\dfrac{1}{0.1}=10\)
Do đó: x=3; y=2; z=1
Tìm x,y,z:(áp dụng t/c của dãy tỉ số bằng nhau)
\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{-4}\)và 3x-2y=28
Tìm x,y,z;(áp dụng t/c của dãy tỉ số bằng nhau)
1/\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và y-z=39
(Áp dụng t/c của dãy tỉ số bằng nhau)
1/2x=3y=4z và x-y-z=35
2/\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\):\(\dfrac{y}{5}\)=\(\dfrac{z}{7}\)và 2x+3y-z=186
\(\dfrac{1}{2}\)x=\(\dfrac{2}{3}\)y=\(\dfrac{3}{4}\)z và x-y=15 (Áp dụng t/c của dãy tỉ số bằng nhau)
Câu 1 : cho tỉ lệ thức a/b =c/d .Chứng minh : \(\dfrac{a+2b}{a-2b}\) = \(\dfrac{c+2d}{c-2d}\)
Câu 2 : Tìm x,y,z biết : (áp dụng công thức dãy tỉ số bằng nhau)
a) 2x=3y , 5y =7z và 3x+5y-7z =30.
b) \(\dfrac{x-1}{2}\)=\(\dfrac{y+3}{4}\)=\(\dfrac{z-5}{6}\)và 5z-3x-4y=50.
c) \(\dfrac{1}{2}\)x =\(\dfrac{2}{3}\)y=\(\dfrac{3}{4}\)z và x-y=15.
Tìm x,y:(áp dụng t/c của dãy tỉ số bằng nhau)
1/x:y=\(1\dfrac{2}{3}\)và x-y=60
2/\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)và \(x^2\)+\(y^2\)=52
Cho dãy tỉ số bằng nhau:\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
Chứng minh rằng : \(p=\dfrac{x+y}{z+t}=\dfrac{y+z}{t+x}=\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}\) có giá trị nguyên.
Tìm x,y:(Áp dụng tính chất của dãy tỉ số bằng nhau)
\(\dfrac{2}{x}\)=\(\dfrac{y}{9}\)và\(\dfrac{x}{4}\)=\(\dfrac{y}{8}\)
Tìm x,y,z biết:
a. \(x=\dfrac{y}{6}=\dfrac{z}{3}và2x-3x-4z=24\)
\(b.6x=10y=15z\) và \(x+y-z=90\)
\(c.\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}và5z-3x-4y=50\)
\(d.\dfrac{x}{4}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{3}vàx-y+100=z\)