Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Đình Đắc
Xem chi tiết
Nguyễn Thị Mỹ vân
Xem chi tiết
Nguyễn Thị Mỹ vân
Xem chi tiết
[       ]
Xem chi tiết
Tùng Nguyễn
Xem chi tiết
Hoàn Minh
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 3 2022 lúc 23:28

ĐKXĐ: \(\left[{}\begin{matrix}x=0\\x\ge3\end{matrix}\right.\)

Với \(x=0\) là nghiệm

Với \(x\ge3\), chia 2 vế cho \(\sqrt{x}\) ta được:

\(\sqrt{x+1}+\sqrt{x+2}=\sqrt{x-3}\)

\(\Leftrightarrow\sqrt{x+1}+\sqrt{x+2}-\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x+1}+\dfrac{5}{\sqrt{x+2}+\sqrt{x-3}}=0\) (vô nghiệm do vế trái luôn dương)

Vậy pt có nghiệm duy nhất \(x=0\)

Nguyễn Hoàng Minh
Xem chi tiết
Lấp La Lấp Lánh
1 tháng 10 2021 lúc 15:36

\(\sqrt{x+3}+2\sqrt{x}=2+\sqrt{x\left(x+3\right)}\left(đk:x\ge0\right)\)

\(\Leftrightarrow x+3+4x+4\sqrt{x\left(x+3\right)}=4+x\left(x+3\right)+4\sqrt{x\left(x+3\right)}\)

\(\Leftrightarrow5x+3=4+x^2+3x\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\left(tm\right)\)

 

 

 

 

Ken_Kaneki_65_56
Xem chi tiết
Hồng Phúc
6 tháng 1 2021 lúc 18:33

ĐK: \(x\ge1\)

\(pt\Leftrightarrow2\sqrt{\left(x-1\right)\left(x+2\right)}-\sqrt{x-1}-6\sqrt{x+2}+3=0\)

\(\Leftrightarrow\left(2\sqrt{x+2}-1\right)\left(\sqrt{x-1}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x+2}=1\\\sqrt{x-1}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4\left(x+2\right)=1\\x-1=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{4}\left(l\right)\\x=10\left(tm\right)\end{matrix}\right.\)

Vậy ...

vũ manh dũng
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 12 2021 lúc 7:38

\(ĐK:x,y\in R\)

Từ 2 PT \(\Leftrightarrow\sqrt{\left(x+1\right)^2+\left(y-1\right)^2}=\sqrt{\left(x-5\right)^2+\left(y+1\right)^2}\)

\(\Leftrightarrow x^2+2x+y^2-2y+2=x^2-10x+y^2+2y+26\\ \Leftrightarrow12x-4y-24=0\\ \Leftrightarrow3x-y-6=0\\ \Leftrightarrow y=3x-6\)

Thay vào \(PT\left(1\right)\Leftrightarrow\sqrt{\left(x-1\right)^2+\left(3x-8\right)^2}=\sqrt{\left(x+1\right)^2+\left(3x-7\right)^2}\)

\(\Leftrightarrow10x^2-50x+65=10x^2-40x+50\\ \Leftrightarrow10x=15\Leftrightarrow x=\dfrac{3}{2}\Leftrightarrow y=-\dfrac{3}{2}\)

Vậy hệ có nghiệm \(\left(x;y\right)=\left(\dfrac{3}{2};-\dfrac{3}{2}\right)\)