Lời giải:
ĐKXĐ: $x\geq 1$; $x=0$ hoặc $x\leq -2$
Bình phương 2 vế suy ra:
\(2x^2+x+2\sqrt{x^2(x-1)(x+2)}=4x^2\)
\(\Leftrightarrow 2\sqrt{x^2(x-1)(x+2)}=2x^2-x\)
Tiếp tục bình phương 2 vế:
\(\Rightarrow 4x^2(x-1)(x+2)=x^2(4x^2-4x+1)\)
\(\Leftrightarrow x^2(8x-9)=0\)
\(\Rightarrow x=0\) hoặc $x=\frac{9}{8}$ (đều thỏa mãn)
Vậy.......
Lời giải:
ĐKXĐ: $x\geq 1$; $x=0$ hoặc $x\leq -2$
Bình phương 2 vế suy ra:
\(2x^2+x+2\sqrt{x^2(x-1)(x+2)}=4x^2\)
\(\Leftrightarrow 2\sqrt{x^2(x-1)(x+2)}=2x^2-x\)
Tiếp tục bình phương 2 vế:
\(\Rightarrow 4x^2(x-1)(x+2)=x^2(4x^2-4x+1)\)
\(\Leftrightarrow x^2(8x-9)=0\)
\(\Rightarrow x=0\) hoặc $x=\frac{9}{8}$ (đều thỏa mãn)
Vậy.......