Ôn tập chương 1: Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
TXT Channel Funfun

Giải phương trình :

\(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\)

Nguyễn Việt Lâm
15 tháng 7 2020 lúc 21:47

Nhìn quen quen, bài giải pt của KHTN mấy hôm trước thì phải

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{5-x}=a\ge0\\\sqrt{2x-1}=b\ge0\end{matrix}\right.\) ta được hệ:

\(\left\{{}\begin{matrix}11a+8b=24+3ab\\2a^2+b^2=9\end{matrix}\right.\)

\(\Rightarrow11a+8b=2a^2+b^2+15+3ab\)

\(\Leftrightarrow2a^2+\left(3b-11\right)a+b^2-8b+15=0\)

\(\Delta=\left(3b-11\right)^2-8\left(b^2-8b+15\right)=\left(b-1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}a=\frac{11-3b-b+1}{2}=6-2b\\a=\frac{11-3b+b-1}{2}=5-b\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{5-x}=6-2\sqrt{2x-1}\\\sqrt{5-x}=5-\sqrt{2x-1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{5-x}+2\sqrt{2x-1}=6\\\sqrt{5-x}+\sqrt{2x-1}=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4\sqrt{\left(5-x\right)\left(2x-1\right)}=35-7x\\2\sqrt{\left(5-x\right)\left(2x-1\right)}=21-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}16\left(5-x\right)\left(2x-1\right)=49\left(5-x\right)^2\\4\left(5-x\right)\left(2x-1\right)=\left(21-x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow...\)


Các câu hỏi tương tự
ngoc tranbao
Xem chi tiết
khong có
Xem chi tiết
Hoàng Thị Mai Trang
Xem chi tiết
dsadasd
Xem chi tiết
Thai Luong
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Anh Khương Vũ Phương
Xem chi tiết
Ngọc
Xem chi tiết
Ngọc Thư
Xem chi tiết