Nhìn quen quen, bài giải pt của KHTN mấy hôm trước thì phải
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{5-x}=a\ge0\\\sqrt{2x-1}=b\ge0\end{matrix}\right.\) ta được hệ:
\(\left\{{}\begin{matrix}11a+8b=24+3ab\\2a^2+b^2=9\end{matrix}\right.\)
\(\Rightarrow11a+8b=2a^2+b^2+15+3ab\)
\(\Leftrightarrow2a^2+\left(3b-11\right)a+b^2-8b+15=0\)
\(\Delta=\left(3b-11\right)^2-8\left(b^2-8b+15\right)=\left(b-1\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}a=\frac{11-3b-b+1}{2}=6-2b\\a=\frac{11-3b+b-1}{2}=5-b\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{5-x}=6-2\sqrt{2x-1}\\\sqrt{5-x}=5-\sqrt{2x-1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{5-x}+2\sqrt{2x-1}=6\\\sqrt{5-x}+\sqrt{2x-1}=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4\sqrt{\left(5-x\right)\left(2x-1\right)}=35-7x\\2\sqrt{\left(5-x\right)\left(2x-1\right)}=21-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}16\left(5-x\right)\left(2x-1\right)=49\left(5-x\right)^2\\4\left(5-x\right)\left(2x-1\right)=\left(21-x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow...\)