CMR: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< 1\)
giúp mình với
Cho: A= 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) + ... + \(\dfrac{1}{2^{100}-1}\)
Chứng minh rằng: 50 < A < 100
Giúp mình với!
Chứng minh rằng :
1- \(\dfrac{1}{2^2}\) - \(\dfrac{1}{3^2}\) - … - \(\dfrac{1}{100^2}\) > \(\dfrac{1}{100}\)
giúp mình với mình cần gấp
Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}\)
\(< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(B=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\) \(\Rightarrow A< \dfrac{99}{100}\)
\(1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-...-\dfrac{1}{100^2}=1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\right)=1-A>\dfrac{1}{100}\)
\(\left(\dfrac{1}{2^2}-1\right)\).\(\left(\dfrac{1}{3^2}-1\right).\left(\dfrac{1}{4^2}-1\right)\).....\(\left(\dfrac{1}{100^2}-1\right)\)
giúp mình nhanh với. tối mình phải nộp rùi huhuhu
\(\left(\dfrac{1}{2^2}-1\right)\times\left(\dfrac{1}{3^2-1}\right)\times\left(\dfrac{1}{4^2}-1\right)\times...\times\left(\dfrac{1}{100^2}-1\right)\)
\(=\dfrac{3}{2^2}\times\dfrac{8}{3^2}\times\dfrac{15}{4^2}\times...\times\dfrac{100^2-1}{100^2}\)
\(=\dfrac{1\times3}{2\times2}\times\dfrac{2\times4}{3\times3}\times\dfrac{3\times5}{4\times4}\times...\times\dfrac{99\times101}{100\times100}\)
\(=\dfrac{1\times2\times3\times...\times99}{2\times3\times4\times...\times100}\times\dfrac{3\times4\times5\times...\times101}{2\times3\times4\times...\times100}\)
\(=\dfrac{1}{100}\times\dfrac{101}{2}\)
\(=\dfrac{101}{200}\)
\(\left(\dfrac{1}{2^2}-1\right)\cdot\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)
\(=\dfrac{-3}{4}\cdot\dfrac{-8}{3}\cdot...\cdot\dfrac{-9999}{10000}\)
\(=\dfrac{1\cdot\left(-3\right)}{2\cdot2}\cdot\dfrac{2\cdot\left(-4\right)}{3\cdot3}\cdot...\cdot\dfrac{99\cdot\left(-101\right)}{100\cdot100}\)
\(=\dfrac{1\cdot2\cdot3\cdot...\cdot99}{2\cdot3\cdot4\cdot...\cdot100}\cdot\dfrac{\left(-3\right)\cdot\left(-4\right)\cdot...\cdot\left(-101\right)}{2\cdot3\cdot4\cdot...\cdot100}\)
Ở tử số phân số bên phải có số thừa số là: \(101-3+1=99\)
99 là số lẻ nên tử số vế phải sẽ cho ra số âm.
\(=\dfrac{1\cdot2\cdot3\cdot...\cdot99}{2\cdot3\cdot4\cdot...\cdot100}\cdot\dfrac{3\cdot4\cdot5\cdot...\cdot\left(-101\right)}{2\cdot3\cdot4\cdot...\cdot100}\)
\(=\dfrac{1\cdot\left(-101\right)}{100\cdot2}\)
\(=\dfrac{-101}{200}\)
Ở mỗi thừa số trong bài luôn cho ra số âm chứ làm vậy là sai rồi Ngọc Đạt.
Chứng minh rằng: \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^3}\)+\(\dfrac{1}{4^2}+....+\dfrac{1}{100^2}< \dfrac{3}{4}\)
Giúp mình với.Mình cần gấp ạ
CMR: 100- \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}\)
Ta có:
\(100-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)=\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{99}{100}\)
\(\Rightarrow100-1-\dfrac{1}{2}-...-\dfrac{1}{100}=\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{99}{100}\)
\(\Rightarrow100=1+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{2}{3}+...+\dfrac{1}{100}+\dfrac{99}{100}\)
\(\Rightarrow100=1+1+1+...+1\) (\(100\) số \(1\))
\(\Rightarrow100=100\)
Vậy \(100-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)=\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{99}{100}\) (Đpcm)
1 ,CMR với n \(\in N\),n\(\ge2\).Ta có :
\(\dfrac{1}{2^3}+\dfrac{1}{3^3}+\dfrac{1}{4^3}+........+\dfrac{1}{n^3}< \dfrac{1}{4}\)
2 , \(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^2}+.......+\dfrac{100}{2^{100}}< 2\)
3, CM : \(\dfrac{1}{n+1}+\dfrac{1}{n+2}+\dfrac{1}{n+3}+....+\dfrac{1}{3n+1}< 2\)
CMR 100-(1+\(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\))= (\(\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}\))
Ta có :
\(100-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...............+\dfrac{1}{100}\right)\)
\(=100-1-\dfrac{1}{2}-\dfrac{1}{3}-..................-\dfrac{1}{100}\)
\(=99-\dfrac{1}{2}-\dfrac{1}{3}-................-\dfrac{1}{100}\)
\(=\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+..................+\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{2}+\dfrac{2}{3}+.................+\dfrac{99}{100}\)
Vậy :\(100-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...............+\dfrac{1}{100}\right)=\dfrac{1}{2}+\dfrac{2}{3}+....................+\dfrac{99}{100}\)
\(\Rightarrowđpcm\)
\(\dfrac{x-1}{21}=\dfrac{3}{x+1}\)
\(2\dfrac{1}{2}x+x=2\dfrac{1}{17}\)
\(\left(x+\dfrac{1}{4}-\dfrac{2}{3}\right):\left(2+\dfrac{1}{6}-\dfrac{1}{4}\right)=\dfrac{7}{46}\)
\(2\dfrac{1}{3}x-1\dfrac{3}{4}x+2\dfrac{2}{3}=3\dfrac{3}{5}\)
Giúp mình với ! Mình cần gấp
a, \(\dfrac{x-1}{21}\) = \(\dfrac{3}{x+1}\)
( x-1)(x+1) = 21.3
x2 + x - x -1 = 63
x2 = 63 + 1
x2 = 64
x = + - 8
b, 2\(\dfrac{1}{2}\)x + x = 2\(\dfrac{1}{17}\)
x( \(\dfrac{5}{2}\) + 1) = \(\dfrac{35}{17}\)
x = \(\dfrac{35}{17}\) : ( \(\dfrac{5}{2}\)+1)
x = \(\dfrac{35}{17}\) x \(\dfrac{2}{7}\)
x = \(\dfrac{10}{17}\)
c, (x + \(\dfrac{1}{4}\) - \(\dfrac{2}{3}\) ) : ( 2 + \(\dfrac{1}{6}\) - \(\dfrac{1}{4}\)) = \(\dfrac{7}{46}\)
(x - \(\dfrac{5}{12}\)): \(\dfrac{23}{12}\) = \(\dfrac{7}{46}\)
(x - \(\dfrac{5}{12}\)) = \(\dfrac{7}{46}\) x \(\dfrac{23}{12}\)
x - \(\dfrac{5}{12}\) = \(\dfrac{7}{12}\)
x = \(\dfrac{7}{12}\) + \(\dfrac{5}{12}\)
x = 1
d, 2\(\dfrac{1}{3}\)x - 1\(\dfrac{3}{4}\)x + \(2\dfrac{2}{3}\) = 3\(\dfrac{3}{5}\)
x( \(\dfrac{7}{3}\) - \(\dfrac{7}{4}\)) + \(\dfrac{8}{3}\) = \(\dfrac{18}{5}\)
x\(\dfrac{7}{12}\) = \(\dfrac{18}{5}\) - \(\dfrac{8}{3}\)
x\(\dfrac{7}{12}\) = \(\dfrac{14}{15}\)
x = \(\dfrac{14}{15}\) : \(\dfrac{7}{12}\)
x = \(\dfrac{8}{5}\)
CMR: \(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}=2\)
Helppp!!!
Lời giải:
Gọi phân số vế trái là $A$. Gọi tử số là $T$. Xét mẫu số:
\(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
\(=1-\frac{1}{2}+1-\frac{1}{3}+1-\frac{1}{4}+....+1-\frac{1}{100}\)
\(=99-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=100-(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100})\)
\(=\frac{1}{2}\left[200-(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100})\right]=\frac{1}{2}T\)
$\Rightarrow A=\frac{T}{\frac{1}{2}T}=2$
Ta có đpcm.
Giải:
Vì \(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}=2\) nên phần tử gấp 2 lần phần mẫu
Ta có:
\(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\)
\(=\dfrac{2.\left[100-\left(\dfrac{3}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{100}\right)\right]}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\)
\(=\dfrac{2.\left[\left(2-\dfrac{3}{2}\right)+\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{5}\right)+...+\left(1-\dfrac{1}{100}\right)\right]}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\)
\(=\dfrac{2.\left(\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+\dfrac{4}{5}+...+\dfrac{99}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\)
\(=2\)
Vậy \(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}=2\left(đpcm\right)\)
Chúc bạn học tốt!