CMR: \(A=\dfrac{3}{4}+\dfrac{5}{36}+\dfrac{7}{144}+...+\dfrac{2n+1}{n^2\left(n+1\right)^2}\)< 1 ( n nguyên dương )
Rút gọn biểu thức sau:
\(A=\left(1-\dfrac{1}{1+2}\right)\left(1-\dfrac{1}{1+2+3}\right)\left(1-\dfrac{1}{1+2+3+4}\right)...\left(1-\dfrac{1}{1+2+3+...+n}\right)\)với n lá các số tự nhiên lớn hơn 2.
( 100 + \(\dfrac{99}{2}+\dfrac{98}{3}+...+\dfrac{1}{100}\)) : ( \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)) -2
CMR: \(C=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{100}{3^{100}}< \dfrac{3}{4}\)
Bài 1 .
a) A = 1 + \(\dfrac{1}{2+1}\) + \(\dfrac{1}{2^2+1}\) +\(\dfrac{1}{2^4+1}\) + .....+\(\dfrac{1}{2^{2n}+1}\)
b) B = \(\dfrac{1}{1.2.3}\) + \(\dfrac{1}{2.3.4}\) + \(\dfrac{1}{3.4.5}\) + ... + \(\dfrac{1}{\left(n-1\right).n.\left(n+1\right)}\)
c) C = \(\dfrac{1.2!}{2}\) + \(\dfrac{2.3!}{2^2}\) +... + \(\dfrac{n.\left(n+1\right)!}{2^n}\) (k! = 1. 2 . 3 ... k)
Bài 1:Giải các pt chứa ẩn ở mẫu sau:
a) \(\dfrac{2x+1}{x-1}=\dfrac{5\left(x-1\right)}{x+1}\) b) \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\) c)\(\dfrac{x-2}{2+x}-\dfrac{3}{x-2}=\dfrac{2\left(x-11\right)}{x^2-4}\)
d)\(\dfrac{x+1}{x-2}-\dfrac{x-1}{x+2}=\dfrac{2\left(x^2+2\right)}{x^2-4}\) e)\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\) g)\(\dfrac{x-1}{x+2}-\dfrac{x}{x-2}=\dfrac{5x-2}{4-x^2}\)
h)\(\dfrac{1}{x+1}-\dfrac{5}{x-2}=\dfrac{15}{\left(x+1\right)\left(2-x\right)}\) j)\(\dfrac{3}{4\left(x-5\right)}+\dfrac{15}{50-2x^2}=\dfrac{7}{6\left(x+5\right)}\) k)\(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
n)\(1+\dfrac{x}{3-x}=\dfrac{5x}{\left(x+2\right)\left(3-x\right)}+\dfrac{2}{x+2}\)
CMR: \(B=\dfrac{1}{3^3}+\dfrac{1}{4^3}+\dfrac{1}{5^3}+...+\dfrac{1}{n^3}< \dfrac{1}{12}\)( n ∈ N; n ≥ 3)
a \(x^2-x=0\) b \(x^2-2x=0\) c (x+1)(x+2)=(2-x)(x+2)
d \(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\) đ \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
e \(\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)
f \(5+\dfrac{76}{x^2-16}=\dfrac{2x-1}{x+4}-\dfrac{3x-1}{4-x}\)
g \(\dfrac{90}{x}-\dfrac{36}{x-6}=2\) h \(\dfrac{1}{x}+\dfrac{1}{x+10}=\dfrac{1}{12}\) i \(\dfrac{x+3}{x-3}-\dfrac{1}{x}=\dfrac{3}{x\left(x-3\right)}\)
k \(\dfrac{3}{x+2}-\dfrac{2}{x-2}+\dfrac{8}{x^2-4}=0\) l \(\dfrac{3}{x+2}-\dfrac{2}{x-3}=\dfrac{8}{\left(x-3\right)\left(x+2\right)}\)
m\(\dfrac{x}{2x+6}-\dfrac{x}{2x+2}=\dfrac{3x+2}{\left(x+1\right)\left(x+3\right)}\)
n \(\dfrac{x}{x+1}-\dfrac{2x-3}{1-x}=\dfrac{3x^2+5}{x^2-1}\) j \(\dfrac{5}{x+7}+\dfrac{8}{2x+14}=\dfrac{3}{2}\)
q \(\dfrac{x-1}{x}-\dfrac{1}{x+1}=\dfrac{2x-1}{x^2+x}\)
Cần gấp ạ
tìm số tự nhiên m thỏa mãn đồng thời cả 2 ptrình sau:
a, \(4\left(n+1\right)+3n-6< 19\)
b, \(\left(n-3\right)^2-\left(n+4\right)\left(n-4\right)\le43\)
Với giá trị nào của m thì biểu thức:
a,\(\dfrac{m-2}{4}+\dfrac{3m+1}{3}\)giá trị âm
b, \(\dfrac{m-4}{6m+9}\)có giá trị dương
c,\(\dfrac{2m-3}{2m+3}+\dfrac{2m+3}{2m-3}\) có giá trị âm
d, \(\dfrac{-m+1}{m+8}+\dfrac{m-1}{m+3}\) có giá trị dương
e,\(\dfrac{\left(m+1\right)\left(m-5\right)}{2}\)