Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vvvvvvvv
Xem chi tiết
Nhi Hoàng
Xem chi tiết
meme
19 tháng 8 2023 lúc 20:03

1/ Để hàm số y = √cos^2(x) + cos(x) - 2m + 1 xác định trên R, ta cần điều kiện để biểu thức trong căn dương: cos^2(x) + cos(x ) - 2m + 1 > 0 Để giải phương trình này, ta sử dụng một số phép biến đổi: cos^2(x) + cos(x) - 2m + 1 = (cos(x) + 2)(cos(x) - m + 1) Điều kiện để biểu thức trên dương là: cos(x) + 2 > 0 và cos(x) - m + 1 > 0 Với cos(x) + 2 > 0, ta có -2 < cos( x) < 0 Với cos(x) - m + 1 > 0, ta có m - 1 < cos(x) < 1 Tổng Hàm, để hàm số y = √cos^2(x) + cos(x) - 2m + 1 xác định trên R, tham số m phải đáp ứng điều kiện -2 < cos(x) < 0 và m - 1 < cos(x) < 1. 2/ Để hàm số y = √cos^2(x) - 2cos(x) + m xác định trên R, ta cần điều kiện để biểu thức trong căn dương: cos^2(x) - 2cos(x) + m > 0 Đây là một phương trình bậc hai theo cos(x). Để giải phương trình này, ta sử dụng công thức delta: Δ = b^2 - 4ac Ở đây, a = 1, b = -2, c = m. Ta có: Δ = (-2)^2 - 4(1)(m) = 4 - 4m = 4(1 - m) Để phương trình có nghiệm thì Δ > 0. Tức là 1 - m > 0 hay m < 1. Tổng quát, để hàm số y = √cos^2(x) - 2cos(x) + m xác định trên R, tham số m phải đáp ứng m < 1. 3/ Để hàm số y = √sin^ 4 (x) + cos^4(x) - sin^2(x) - m xác định trên R, ta cần điều kiện để biểu thức trong căn dương: sin^4(x) + cos^4(x) - sin ^2(x) - m > 0 Đây cũng là một phương trình bậc hai theo sin(x). Ta sử dụng công thức delta as on, with a = 1, b = -1, c = -m. Δ = (-1)^2 - 4(1)(-m) = 1 + 4m = 4m + 1 Để phương trình có nghiệm thì Δ > 0. Tức là m > -1/4. Tổng quát, để hàm số y = √sin^4(x) + cos^4(x) - sin^2(x) - m xác định trên R, tham số m phải thỏa mãn m > -1/4.

vvvvvvvv
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 6 2021 lúc 20:22

ĐKXĐ:

a. Không hiểu đề bài là gì

b. \(3-2cosx\ge0\)

\(\Leftrightarrow cosx\le\dfrac{3}{2}\) (luôn đúng)

Vậy \(D=R\)

c. \(\left\{{}\begin{matrix}\dfrac{1+cosx}{1-cosx}\ge0\left(luôn-đúng\right)\\1-cosx\ne0\end{matrix}\right.\)

\(\Leftrightarrow cosx\ne1\Leftrightarrow x\ne k2\pi\)

Diệu Ngọc
Xem chi tiết
Trần Ái Linh
6 tháng 8 2021 lúc 18:29

1. Hàm số xác định `<=> 1-cosx \ne 0<=>cosx \ne 1<=>x \ne k2π`

Vì: `1+cosx >=0 forallx ; 1-cosx >=0 forall x`

2. Hàm số xác định `<=> sin^2x \ne cos^2x <=> (1-cos2x)/2 \ne (1+cos2x)/2`

`<=>cos2x \ne 0<=> 2x \ne π/2+kπ <=> x \ne π/4+kπ/2`

3. Hàm số xác định `<=> cos2x \ne 0<=> x \ne π/4+kπ/2 (k \in ZZ)`.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 23:01

a) Biểu thức \(\frac{{1 - \cos x}}{{\sin x}}\) có nghĩa khi \(\sin x \ne 0\), tức là \(x \ne k\pi \;\left( {k\; \in \;\mathbb{Z}} \right)\).

Vậy tập xác định của hàm số đã cho là \(\mathbb{R}/{\rm{\{ }}k\pi {\rm{|}}\;k\; \in \;\mathbb{Z}\} \;\)

b) Biểu thức \(\sqrt {\frac{{1 + \cos x}}{{2 - \cos x}}} \) có nghĩa khi \(\left\{ {\begin{array}{*{20}{c}}{\frac{{1 + \cos x}}{{2 - \cos x}} \ge 0}\\{2 - \cos x \ne 0}\end{array}} \right.\) 

Vì \( - 1 \le \cos x \le 1 ,\forall x \in \mathbb{R}\)

 Vậy tập xác định của hàm số là \(D = \mathbb{R}\)

Nhi Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 22:02

1: ĐKXĐ: 3-cosx>0

=>cosx<3(luôn đúng)

2: ĐKXĐ: 1-sin 3x>=0

=>sin 3x<=1(luôn đúng)

3: ĐKXĐ: sin x<>0 và 2x<>pi/2+kpi

=>x<>kpi và x<>pi/4+kpi/2

4: ĐKXĐ: 2x-1>=0

=>x>=1/2

títtt
Xem chi tiết
Akai Haruma
27 tháng 8 2023 lúc 21:11

Lời giải:
a. TXĐ: $x^2-1\neq 0\Leftrightarrow (x-1)(x+1)\neq 0$

$\Leftrightarrow x\neq \pm 1$

Vậy TXĐ $\mathbb{R}\setminus \left\{\pm 1\right\}$

b. TXĐ: $x\geq 0$ hay $[0;+\infty)$

tran gia vien
Xem chi tiết
Hồng Phúc
17 tháng 9 2021 lúc 7:01

Hàm số xác định khi: \(2cosx-\sqrt{3}\ne0\Leftrightarrow cosx\ne\dfrac{\sqrt{3}}{2}\Leftrightarrow x\ne\pm\dfrac{\pi}{6}+k2\pi\).

Thiên Yết
Xem chi tiết