Chứng minh rằng: \(\forall x\in R:\)
\(|x+2012|+|x-2014|\ge2016\)
Chứng minh rằng \(x^4+4x^3+6x^2+4x+1\ge0,\forall x\in R\)
\(x^4+4x^3+6x^2+4x+1\)
\(=\left(x^4+2x^3+x^2\right)+\left(2x^3+4x^2+2x\right)+\left(x^2+2x+1\right)\)
\(=x^2\left(x^2+2x+1\right)+2x\left(x^2+2x+1\right)+\left(x^2+2x+1\right)\)
\(=\left(x^2+2x+1\right)\left(x^2+2x+1\right)=\left(x+1\right)^4\ge0;\forall x\in R\)
Chứng minh rằng: (cos2x-sin2x)2+2(sin3x-sinx).cos-sin2x=cos2x, \(\forall x\in R\)
Ủa câu này nãy làm rồi mà bạn chưa hiểu hay sao?
\(VT=cos^22x+sin^22x-2sin2x.cos2x+2sin3x.cosx-2sinx.cosx-sin^{2x}\)
Ở đây ta lần lượt có:
\(cos^22x+sin^22x=1\)
\(2sin2x.cos2x=sin4x\)
\(2sin3x.cosx=sin4x+sin2x\)
\(2sinx.cosx=sin2x\)
Ghép lại sẽ được:
\(VT=1-sin4x+sin4x+sin2x-sin2x-sin^2x=1-sin^2x=cos^2x\)
chứng minh rằng \(\forall x\in R\) đều là nghiệm của bất phương trình \(x^2-x+1>0\)
\(x^2-x+1=x^2-\frac{1}{2}\cdot2x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\in R\)
a) Giải phương trình: \(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}\)
b) Cho \(0< x< y\le3\) và \(2xy\le3x+y\forall x,y\in R\). Chứng minh rằng: \(x^2+y^2\le10\)
Chứng minh rằng phương trình
\(m\cos^2\left(x\right)+\cos\left(x\right)-m\sin^2\left(x\right)=0\)
Chứng minh rằng phương trình luôn luôn có nghiệm \(\forall x\in R\).
Chứng minh rằng
x^2-4x+10\(\ge\) 0 \(\forall\)x\(\in\)R
\(x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6>0\forall x\)
Ta có :
\(x^2-4x+10\)
\(=\)\(\left(x^2-2.2x+2^2\right)+6\)
\(=\)\(\left(x-2\right)^2+6\ge0+6=6>0\)
Vậy \(x^2-4x+10\ge0\) \(\forall x\inℝ\)
Chúc bạn học tốt ~
1a, Chứng minh mệnh đề " \(\forall x\in R,x^2\ge x\) " sai và viết mệnh đề phủ định của nó
Với \(x=\dfrac{1}{2}\in R\Rightarrow x^2=\dfrac{1}{4}< x=\dfrac{1}{2}\)
Do đó mệnh đề đã cho sai
Mệnh đề phủ định:
\("\exists x\in R,x^2< x"\)
Chứng minh mệnh đề: \(A:\forall x\in R,\forall y\in R:2x^2+y^2+10x-4y\ge2xy-13\)luôn đúng
giúp mình vs nha
\(2x^2+y^2+10x-4y\ge2xy-13\) (1)
\(\Leftrightarrow2x^2+y^2+10x-4y-2xy+13\ge0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4+x^2+6x+9\ge0\)
\(\Rightarrow\left(x-y\right)^2+2.\left(x-y\right).2+2^2+x^2+2.x.3+3^2\ge0\)
\(\Rightarrow\left(x-y+2\right)^2+\left(x+3\right)^2\ge0\)(2)
Ta thấy (2) luôn đúng mà \(\left(2\right)\Leftrightarrow\left(1\right)\)nên (1) luôn đúng
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}x-y+2=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=-3\\y=-1\end{cases}}}\)
Chứng minh rằng:
\(\left(cos2x-sin2x\right)^2+2\left(sin3x-sinx\right)cosx-1=0\), \(\forall x\in R\)
\(\left(cos2x-sin2x\right)^2+2\left(sin3x-sinx\right).cosx-1\)
\(=2sin^2\left(2x-\frac{\pi}{4}\right)+4cos2x.sinx.cosx-1\)
\(=1-cos\left(4x-\frac{\pi}{2}\right)+2sin2x.cos2x-1\)
\(=-cos\left(\frac{\pi}{2}-4x\right)+sin4x\)
\(=-sin4x+sin4x=0\)