Hãy chứng min rằng :
1) \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2},\forall a,b,c,d\in R\)
2) \(\sqrt{4\cos^2x.\cos^2y+\sin^2\left(x-y\right)}+\sqrt{4\sin^2x.\sin^2y+\sin^2\left(x-y\right)}\ge2,\forall x,y\in R\)
giải hệ phương trình
a) \(\left\{{}\begin{matrix}\sqrt{2x^2+2y^2}+\sqrt{\frac{4}{3}\left(x^2+xy+y^2\right)}=2\left(x+y\right)\\\sqrt{3x+1}+\sqrt{5x+4}=3xy-y+3\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\\\sqrt{x+2y+1}+2\sqrt[3]{12x+7y+8}=2xy+x+5\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x^2+xy+x+3=0\\\left(x+1\right)^2+3\left(y+1\right)+2\left(xy-\sqrt{x^2y+2y}\right)=0\end{matrix}\right.\)
Giải hệ pt
a) \(\left\{{}\begin{matrix}x+\dfrac{y}{\sqrt{1+x^2}+x}+y^2=0\\\dfrac{x^2}{y^2}+2\sqrt{x^2+1}+y^2=3\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{x^2+4}+\sqrt{y^2+2y-4}=4\\\sqrt{x^2+9}+y=5\end{matrix}\right.\)
1:Cho x;y>0:\(\frac{2}{x}+\frac{3}{y}=6\).Tìm min P=x+y
2:Cho x;y;z>0:x+y+z\(\le\)1.Chứng minh\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{82}\)
3:cho a;b;c;d>0.Chứng minh\(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
4:Tìm max,min y=x+\(\sqrt{4-x^2}\)
5:Cho \(a\ge1;b\ge1\).Chứng minh \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
6:Chứng minh:\(\left(ab+bc+ca\right)^2\ge3\text{a}bc\left(a+b+c\right)\)
Giải bất phương trình này giúp mình với ạ:
\(\sqrt{x^2+12}+5\le3x+\sqrt{x^2+5}\)
giải các phương trình sau : a) \(\sqrt{x^2+2x}\) = -2x2 - 4x + 3 ; b) \(\sqrt{\left(x+1\right)\left(x+2\right)}\) = x2 + 3x - 4 . Hướng dẫn : a) Đặt y = \(\sqrt{x^2+2x}\) , y>=0 , ta được phương trình y = -2y2 +3 b) Vì (x+1)(x+2) = x2 +3x + 2 nên đặt y = \(\sqrt{x^2+3x+2}\) , y >= 0 , ta được phương trình y = y2 - 6
cho x,y,z >0 và x+y+z=3
chứng minh : A = \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+z\text{x}+x^2}\ge3\sqrt{3}\)
giải các phương trình sau : a) \(\sqrt{x^2+2x}\) = -2x2 - 4x + 3 ; b) \(\sqrt{\left(x+1\right)\left(x+2\right)}\) = x2 + 3x - 4 . Hướng dẫn : a) Đặt y = \(\sqrt{x^2+2x}\) , y>=0 , ta được phương trình y = -2y2 +3 b) Vì (x+1)(x+2) = x2 +3x + 2 nên đặt y = \(\sqrt{\left(x+1\right)\left(x+2\right)}\) , y>=0 , ta được phương trình y = y2 - 6
giải các phương trình sau : a) \(\sqrt{x^2+2x}\) = -2x2 - 4x + 3 ; b) \(\sqrt{\left(x+1\right)\left(x+2\right)}\) = x2 + 3x - 4 .
Hướng dẫn : a) Đặt y= \(\sqrt{x^2+2x}\), y>=0 , ta được phương trình y = -2y2 +3
b) Vì (x+1)(x+2) = x2 +3x + 2 nên đặt y = \(\sqrt{x^2+3x+2}\), y>=0 , ta được phương trình y = y2 - 6