Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quang Đẹp Trai
Xem chi tiết
Nguyễn Đức Lâm
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 9 2021 lúc 16:26

\(\sqrt{n+1}-\sqrt{n}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n+1}+\sqrt{n}}=\dfrac{1}{\sqrt{n+1}+\sqrt{n}}< \dfrac{1}{\sqrt{n}+\sqrt{n}}=\dfrac{1}{2\sqrt{n}}\\ \Leftrightarrow2\left(\sqrt{n+1}-\sqrt{n}\right)< \dfrac{1}{\sqrt{n}}\left(1\right)\\ \sqrt{n}-\sqrt{n-1}=\dfrac{\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n-1}\right)}{\sqrt{n}+\sqrt{n-1}}=\dfrac{1}{\sqrt{n}+\sqrt{n-1}}>\dfrac{1}{\sqrt{n}+\sqrt{n}}=\dfrac{1}{2\sqrt{n}}\\ \Leftrightarrow2\left(\sqrt{n}-\sqrt{n-1}\right)>\dfrac{1}{\sqrt{n}}\left(2\right)\)

\(\left(1\right)\left(2\right)\RightarrowĐfcm\)

09.Phạm Trần Duân
Xem chi tiết
Trần Tuấn Hoàng
26 tháng 4 2022 lúc 22:17

-Mình thử trình bày cách làm của mình nhé, bạn xem thử có gì sai sót không hoặc chỗ nào bạn không hiểu thì hỏi mình nhé.

Trần Đức Huy
Xem chi tiết
missing you =
5 tháng 2 2022 lúc 10:03

\(không\) \(dùng\) \(bđt\) \(làm\) \(sao\) \(ra\) \(được\) ??

\(\sqrt{a^2+\dfrac{1}{b^2}}=\dfrac{1}{\sqrt{17}}.\sqrt{\left(1+4^2\right)\left(a^2+\dfrac{1}{b^2}\right)}\ge\dfrac{1}{\sqrt{17}}\left(a+\dfrac{4}{b}\right)\left(bunhiacopki\right)\)

\(tương-tự:\sqrt{b^2+\dfrac{1}{c^2}}\ge\dfrac{1}{\sqrt{17}}\left(b+\dfrac{4}{c}\right)\)

\(\sqrt{c^2+\dfrac{1}{a^2}}\ge\dfrac{1}{\sqrt{17}}\left(c+\dfrac{4}{a}\right)\)

\(\Rightarrow Q\ge\dfrac{1}{\sqrt{17}}\left(a+b+c+\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=\dfrac{1}{\sqrt{17}}\left[16a+\dfrac{4}{a}+16b+\dfrac{4}{b}+16c+\dfrac{4}{c}-15\left(a+b+c\right)\right]\)

\(bđt:cosi\Rightarrow16a+\dfrac{4}{a}\ge2\sqrt{16a.\dfrac{4}{a}}=2\sqrt{16.4}=16\)

\(tương-tự\Rightarrow16b+\dfrac{4}{b}\ge16;16c+\dfrac{4}{c}\ge16\)

\(có:a+b+c\le\dfrac{3}{2}\Rightarrow15\left(a+b+c\right)\le\dfrac{45}{2}\)

\(\Rightarrow-15\left(a+b+c\right)\ge-\dfrac{45}{2}\)

\(\Rightarrow Q\ge\dfrac{1}{\sqrt{17}}\left(16+16+16-\dfrac{45}{2}\right)=\dfrac{3\sqrt{17}}{2}\)

\(dấu"="xayra\Leftrightarrow a=b=c=\dfrac{1}{2}\)

các bước ban đầu dùng bunhia chọn được 1+4^2 là do dự đoán được trước điểm rơi tại a=b=c=1/2 thôi bạn,cả bước tách dùng cosi cũng dự đoán dc điểm rơi =1/2 nên tách đc thôi

 

Minhmetmoi
5 tháng 2 2022 lúc 10:20

Tại sao lại k được dùng nhỉ? Trông khi dùng thì bài toán sẽ dễ giải quyết hơn

 

Áp dụng Bunhiacopxki:

     \(\sqrt{\left(a^2+\dfrac{1}{b^2}\right)\left(\dfrac{1}{4}+4\right)}\ge\dfrac{a}{2}+\dfrac{2}{b}\)

     \(\Rightarrow\sqrt{a^2+\dfrac{1}{b^2}}\ge\dfrac{2}{\sqrt{17}}\left(\dfrac{a}{2}+\dfrac{2}{b}\right)\)

Do đó:

     \(Q\ge\dfrac{2}{\sqrt{17}}\left[\dfrac{a+b+c}{2}+2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\right]\)

Ta có:  \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)

     \(\Rightarrow Q\ge\dfrac{2}{\sqrt{17}}\left[\dfrac{a+b+c}{2}+\dfrac{18}{a+b+c}\right]\)

 Áp dụng Cô-si:

      \(\dfrac{a+b+c}{2}+\dfrac{9}{8\left(a+b+c\right)}\ge\dfrac{3}{2}\)

Do đó:

     \(Q\ge\dfrac{2}{\sqrt{17}}\left[\dfrac{3}{2}+\dfrac{135}{8\left(a+b+c\right)}\right]\ge\dfrac{2}{\sqrt{17}}\left[\dfrac{3}{2}+\dfrac{135}{8.\dfrac{3}{2}}\right]=\dfrac{3\sqrt{17}}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)

Minhmetmoi
5 tháng 2 2022 lúc 11:34

Cách này 100% dùng Cô-si

Áp dụng Cô-si:

     \(Q\ge3\sqrt[3]{\sqrt{\left(a^2+\dfrac{1}{b^2}\right)\left(b^2+\dfrac{1}{c^2}\right)\left(c^2+\dfrac{1}{a^2}\right)}}\)

Ta có:

     \(A=\left(a^2+\dfrac{1}{b^2}\right)\left(b^2+\dfrac{1}{c^2}\right)\left(c^2+\dfrac{1}{a^2}\right)\)

         \(=\left(a^2+b^2+c^2\right)+\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)+\left(abc\right)^2+\dfrac{1}{\left(abc\right)^2}\)

Áp dụng Cô-si:

     \(a^2+\dfrac{1}{16a^2}\ge\dfrac{1}{2}\)

     Tương tự với các phần còn lại

\(\Rightarrow A\ge\dfrac{3}{2}+\dfrac{15}{16}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)+\left(abc\right)^2+\dfrac{1}{\left(abc\right)^2}\)

Ta có:

     \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge3\sqrt[3]{\dfrac{1}{\left(abc\right)^2}}\ge3\sqrt[3]{\dfrac{1}{\left[\dfrac{\left(a+b+c\right)^3}{27}\right]^2}}\ge12\) (Cô-si)

     \(\left(abc\right)^2+\dfrac{1}{64^2\left(abc\right)^2}\ge\dfrac{1}{32}\) (Cô-si)

\(\Rightarrow A\ge\dfrac{3}{2}+\dfrac{15}{16}.12+\dfrac{1}{32}+\dfrac{4095}{64^2\left(abc\right)^2}\)

Mà:

     \(abc\le\dfrac{\left(a+b+c\right)^3}{27}=\dfrac{1}{8}\)

\(\Rightarrow A\ge\dfrac{3}{2}+\dfrac{15}{16}.12+\dfrac{1}{32}+\dfrac{4095}{64^2.\dfrac{1}{8^2}}=\dfrac{4913}{64}\)

\(\Rightarrow Q\ge3\sqrt[3]{\sqrt{A}}\ge\dfrac{3\sqrt{17}}{2}\)

 

socola
Xem chi tiết
Nguyễn Tấn An
11 tháng 7 2018 lúc 9:20

Ta có: \(\dfrac{x^2+5}{\sqrt{x^2+4}}>2\Leftrightarrow\left(\dfrac{x^2+5}{\sqrt{x^2+4}}\right)^2-4>0\Leftrightarrow\dfrac{x^4+10x^2+25-4x^2-16}{x^2+4}>0\Leftrightarrow\dfrac{x^4+6x^2+9}{x^2+4}>0\Leftrightarrow\dfrac{\left(x^2+3\right)^2}{x^2+4}>0\)

Lưu Phương Thảo
Xem chi tiết
Linh_Windy
5 tháng 10 2017 lúc 18:46

Chị cx học Tê Tiêu ạ,A mấy ạ

Trịnh Trúc Uyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 7 2022 lúc 9:06

\(\dfrac{a^2+3}{\sqrt{a^2+2}}=\dfrac{a^2+2+1}{\sqrt{a^2+2}}=\sqrt{a^2+2}+\dfrac{1}{\sqrt{a^2+2}}\ge2\cdot\sqrt{\left(\sqrt{a^2+2}\right)\cdot\dfrac{1}{\sqrt{a^2+2}}}=2\)

Xem chi tiết
Nguyen
12 tháng 3 2019 lúc 20:43

C/m: \(\dfrac{1}{\sqrt{k}+\sqrt{k+1}}=\dfrac{\sqrt{k+1}-\sqrt{k}}{k+1-k}=\sqrt{k+1}-\sqrt{k}\)\(\left(k\ge1,k\in\text{ℕ}\right)\)

Có: \(\dfrac{1}{\sqrt{k-1}+\sqrt{k}}>\dfrac{1}{\sqrt{k}+\sqrt{k+1}}\)

\(\Rightarrow\dfrac{2}{\sqrt{k-1}+\sqrt{k}}>\dfrac{1}{\sqrt{k}+\sqrt{k+1}}+\dfrac{1}{\sqrt{k-1}+\sqrt{k}}\)\(=\sqrt{k}-\sqrt{k-1}+\sqrt{k+1}-\sqrt{k}=\sqrt{k+1}-\sqrt{k-1}\)

\(\Rightarrow2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{79}+\sqrt{80}}\right)>\sqrt{3}-\sqrt{1}+\sqrt{5}-\sqrt{3}+...+\sqrt{81}=9-1=8\)

\(\Rightarrow\dfrac{1}{\sqrt{1}+\sqrt{2}}+...+\dfrac{1}{\sqrt{79}+\sqrt{80}}>4\)(đpcm).

Nguyễn Việt Lâm
12 tháng 3 2019 lúc 20:45

\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)

Xét:

\(B=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{80}+\sqrt{81}}=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{81}-\sqrt{80}\)

\(\Rightarrow B=\sqrt{81}-\sqrt{1}=8\)

Mặt khác, do \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}< \frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{1}+\sqrt{2}}=\frac{2}{\sqrt{1}+\sqrt{2}}\)

Tương tự: \(\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}< \frac{2}{\sqrt{3}+\sqrt{4}}\) ....

\(\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}< \frac{2}{\sqrt{79}+\sqrt{80}}\)

Cộng vế với vế ta được: \(2A>B=8\Rightarrow A>4\)

Lê Nhật Tân
Xem chi tiết
Incursion_03
9 tháng 12 2018 lúc 20:49

\(\sqrt{a+2}+\sqrt{a+4}>\sqrt{a}+\sqrt{a+6}\)

\(\Leftrightarrow a+2+2\sqrt{\left(a+2\right)\left(a+4\right)}+a+4>a+2\sqrt{a\left(a+6\right)}+a+6\)

\(\Leftrightarrow\sqrt{\left(a+2\right)\left(a+4\right)}>\sqrt{a\left(a+6\right)}\)

\(\Leftrightarrow a^2+6a+8>a^2+6a\)

\(\Leftrightarrow8>0\)(luôn đúng)

Vậy /////////