C/m: \(\dfrac{1}{\sqrt{k}+\sqrt{k+1}}=\dfrac{\sqrt{k+1}-\sqrt{k}}{k+1-k}=\sqrt{k+1}-\sqrt{k}\)\(\left(k\ge1,k\in\text{ℕ}\right)\)
Có: \(\dfrac{1}{\sqrt{k-1}+\sqrt{k}}>\dfrac{1}{\sqrt{k}+\sqrt{k+1}}\)
\(\Rightarrow\dfrac{2}{\sqrt{k-1}+\sqrt{k}}>\dfrac{1}{\sqrt{k}+\sqrt{k+1}}+\dfrac{1}{\sqrt{k-1}+\sqrt{k}}\)\(=\sqrt{k}-\sqrt{k-1}+\sqrt{k+1}-\sqrt{k}=\sqrt{k+1}-\sqrt{k-1}\)
\(\Rightarrow2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{79}+\sqrt{80}}\right)>\sqrt{3}-\sqrt{1}+\sqrt{5}-\sqrt{3}+...+\sqrt{81}=9-1=8\)
\(\Rightarrow\dfrac{1}{\sqrt{1}+\sqrt{2}}+...+\dfrac{1}{\sqrt{79}+\sqrt{80}}>4\)(đpcm).
\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)
Xét:
\(B=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{80}+\sqrt{81}}=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{81}-\sqrt{80}\)
\(\Rightarrow B=\sqrt{81}-\sqrt{1}=8\)
Mặt khác, do \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}< \frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{1}+\sqrt{2}}=\frac{2}{\sqrt{1}+\sqrt{2}}\)
Tương tự: \(\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}< \frac{2}{\sqrt{3}+\sqrt{4}}\) ....
\(\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}< \frac{2}{\sqrt{79}+\sqrt{80}}\)
Cộng vế với vế ta được: \(2A>B=8\Rightarrow A>4\)