giải pt x2 -7x bằng 6\(\sqrt{x+5}\)-30
Giai pt:
\(x^2-7x=6\sqrt{x+5}-30\)
ĐK:x\(\ge-5\)
Ta đặt \(\sqrt{x+5}=a\)(a\(\ge0\))\(\Rightarrow x+5=a^2\Leftrightarrow x=a^2-5\)
Vậy \(x^2-7x=6\sqrt{x+5}-30\Leftrightarrow\left(a^2-5\right)^2-7\left(a^2-5\right)=6a-30\Leftrightarrow a^4-10a^2+25-7a^2+35-6a+30=0\Leftrightarrow a^4-17a^2-6a+90=0\Leftrightarrow\left(a-3\right)^2\left(a^2+6a+10\right)=0\)(1)
Ta có a2+6a+10=a2+2a.3+9+1=(a+3)2+1\(\ge1\)
Vậy (1)\(\Leftrightarrow\left(a-3\right)^2=0\Leftrightarrow a-3=0\Leftrightarrow a=3\Rightarrow x=a^2-5=3^2-5=9-5=4\left(tm\right)\)Vậy x=4 là nghiệm của phương trình
Giải PT sau: \(\left(2-\sqrt{5}\right)\)x2 + \(\left(6-\sqrt{5}\right)\)x \(-\) \(8\) + \(2\sqrt{5}\) = 0
\(\left(2-\sqrt{5}\right)x^2+\left(6-\sqrt{5}\right)x-8+2\sqrt{5}=0\)
\(\Leftrightarrow\left(2-\sqrt{5}\right)x^2-\left(2-\sqrt{5}\right)x+\left(8-2\sqrt{5}\right)x-(8-2\sqrt{5})=0\)
\(\Leftrightarrow\left(2-\sqrt{5}\right)x\left(x-1\right)+\left(8-2\sqrt{5}\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(2-\sqrt{5}\right)x+\left(8-2\sqrt{5}\right)\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left(2-\sqrt{5}\right)x=-8+2\sqrt{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-8+2\sqrt{5}}{2-\sqrt{5}}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=6+4\sqrt{5}\end{matrix}\right.\)
Vậy \(S=\left\{1;6+4\sqrt{5}\right\}\)
giải pt \(\sqrt{3x^2-6x-6}=3\sqrt{\left(2-x\right)^5}+\left(7x-19\right)\sqrt{2-x}\)
\(\sqrt{3x^2-6x-6}=3\sqrt{\left(2-x\right)^5}+\left(7x-19\right)\sqrt{2-x}\)
Điều kiện: \(\hept{\begin{cases}3x^2-6x-6\ge0\\2-x\ge0\end{cases}}\)
\(\Rightarrow x\le1-\sqrt{3}\)
Ta có:
\(\frac{\sqrt{3x^2-6x-6}}{\sqrt{2-x}}=3\left(2-x\right)^2+\left(7x-19\right)\) (điều kiện \(x\le\frac{5}{6}-\frac{\sqrt{109}}{6}\))
\(\Leftrightarrow\frac{3x^2-6x-6}{2-x}=9x^4-30x^3-17x^2+70x+49\)
\(\Leftrightarrow\left(x+1\right)\left(3x-8\right)\left(3x^3-11x^2+4+13\right)=0\)
(Kết hợp với điều kiện ta suy ra)
\(\Leftrightarrow x=-1\)
x = 1 nha bạn
Cách giải y hệt bạn alibaba nguyễn. Các bạn làm theo nha
Đúng 100%
Đúng 100%
giải pt :
a,\(3\sqrt{x^2+4x-5}+\sqrt{x-3}=\sqrt{11x^2+25x+2}\)
b,\(\sqrt{5x^2+14x+9}-5\sqrt{x+1}=\sqrt{x^2-x-2}\)
c, \(x^2-8x+17=3\sqrt{x^3-7x+6}\)
Giải các phương trình sau: \(7x+6\sqrt{x+5}=x^2+30\)
\(7x+6\sqrt{x+5}=x^2+30\left(đk:x\ge-5\right)\)
\(\Leftrightarrow6\sqrt{x+5}=x^2-7x+30\)
Ta thấy 2 vế đều dương nên bình phương lên ta được:
\(36x+180=x^4+49x^2+900-14x^3+60x^2-420x\)
\(\Leftrightarrow x^4-14x^3+109x^2-456x+720=0\)
\(\Leftrightarrow x^3\left(x-4\right)-10x^2\left(x-4\right)+69x\left(x-4\right)-180\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^3-10x^2+69x-180\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left[x^2\left(x-4\right)-6x\left(x-4\right)+45\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-4\right)^2\left(x^2-6x+45\right)=0\)
\(\Leftrightarrow x=4\left(tm\right)\) (do \(x^2-6x+45=\left(x^2-6x+9\right)+36=\left(x-3\right)^2+36\ge36>0\))
giải pt : \(3\sqrt{3x-2}+6\sqrt{x-1}=7x-10+4\sqrt{3x^2-5x+2}\)
ĐK: \(x\ge1\)
Đặt \(\sqrt{3x-2}+2\sqrt{x-1}=t\left(t\ge1\right)\)
\(pt\Leftrightarrow3t=t^2-4\)
\(\Leftrightarrow t^2-3t-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=4\\t=-1\left(l\right)\end{matrix}\right.\)
\(t=4\Leftrightarrow\sqrt{3x-2}+2\sqrt{x-1}=4\)
\(\Leftrightarrow7x-6+4\sqrt{\left(3x-2\right)\left(x-1\right)}=16\)
\(\Leftrightarrow4\sqrt{3x^2-5x+2}=22-7x\)
\(\Leftrightarrow\left\{{}\begin{matrix}48x^2-80x+32=484+49x^2-308x\\22-7x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}452+x^2-228x=0\\x\le\dfrac{22}{7}\end{matrix}\right.\)
\(\Leftrightarrow x=2\left(tm\right)\)
Giải PT: \(\left(\sqrt{x+5}-\sqrt{x+2}\right).\left(1+\sqrt{x^2+7x+10}\right)=3\)
\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\left(đk:x\ge-2\right)\)
Đặt \(a=\sqrt{x+5},b=\sqrt{x+2}\left(đk:a,b\ge0,a\ne b\right)\)
\(\Rightarrow\left\{{}\begin{matrix}ab=\sqrt{\left(x+5\right)\left(x+2\right)}=\sqrt{x^2+7x+10}\\a^2-b^2=x+5-x-2=3\end{matrix}\right.\)
PT trở thành: \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
\(\Leftrightarrow\left(a-b\right)\left(ab+1\right)=\left(a-b\right)\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)\left(ab+1-a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(b-1\right)\left(a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\left(loại\right)\\a=1\\b=1\end{matrix}\right.\)
+ Với a=1
\(\Rightarrow\sqrt{x+5}=1\Leftrightarrow x+5=1\Leftrightarrow x=-4\left(ktm\right)\)
+ Với b=1
\(\Rightarrow\sqrt{x+2}=1\Leftrightarrow x+2=1\Leftrightarrow x=-1\left(tm\right)\)
Vậy \(S=\left\{-1\right\}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+5}=a\\\sqrt{x+2=b}\end{matrix}\right.\)
Thì được:
\(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(a-b\right)=0\)
Làm tiếp
\(ĐK:x\ge-2\)
\(PT\Leftrightarrow\dfrac{x+5-x-2}{\sqrt{x+5}+\sqrt{x+2}}\left(1+\sqrt{x^2+7x+10}\right)=3\\ \Leftrightarrow\dfrac{3\left(1+\sqrt{\left(x+5\right)\left(x+2\right)}\right)}{\sqrt{x+5}+\sqrt{x+2}}=3\\ \Leftrightarrow1+\sqrt{\left(x+5\right)\left(x+2\right)}=\sqrt{x+5}+\sqrt{x+2}\\ \Leftrightarrow\left(\sqrt{x+5}-1\right)\left(1-\sqrt{x+2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=1\\\sqrt{x+2}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+5=1\\x+2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\\ \Leftrightarrow x=-1\)
giải pt sau:
\(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{7x+7}\sqrt{7x-6}=181-14x\)
Đặt a=7x+7;b=7x-6 ta có hpt:
\(\begin{cases}a+b+2ab=-a-b+182\\a-b=13\end{cases}\Leftrightarrow\begin{cases}2a+2b+2ab=182\\a=13+b\end{cases}\)
Giải
giải pt sau:
\(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{7x+7}\sqrt{7x-6}=181-14x\)