Biết a/a' + b/b'=1 và b/b' + c/c'= 1
CMR a*b*c + a'*b'*c'=0
Bài 1: Cho a,b,c >0 t/m: abc=1
CMR: \(\dfrac{1}{a^3+b^3+1}+\dfrac{1}{b^3+c^3+1}+\dfrac{1}{c^3+a^3+1}\le1\)
Bài 2: Cho a,b,c >0 t/m a+b+c=1
CMR: \(\dfrac{1+a}{1-a}+\dfrac{1+b}{1-b}+\dfrac{1+c}{1-c}\ge6\)
Bài 3: Cho a,b,c >0 t/m abc=1
CMR: \(\dfrac{ab}{a^4+b^4+ab}+\dfrac{bc}{b^4+c^4+bc}+\dfrac{ac}{c^4+a^4+ac}\le1\)
Cho a, b, c > 0 và \(\dfrac{a}{b}\) < 1
CMR: \(\dfrac{a}{b}\) < \(\dfrac{a+c}{b+c}\)
\(\dfrac{a}{b}=\dfrac{a\left(b+c\right)}{b\left(b+c\right)}=\dfrac{ab+ac}{b^2+bc}\)
\(\dfrac{a+c}{b+c}=\dfrac{b\left(a+c\right)}{b\left(b+c\right)}=\dfrac{ba+bc}{b^2+bc}\)
Do \(ab=ba;ac< bc\) do \(\dfrac{a}{b}< 1\) hay \(a< b\)
\(\Rightarrow ab+ac< bc+ba\)
\(Vậy\) \(\dfrac{a}{b}< \dfrac{a+c}{b+c}\) \(\left(đpcm\right)\)
Cho a,b,c > 0 thỏa a/b <1
CMR: a/b < \(\dfrac{a+c}{b+c}\)
BĐT tương đương
\(\dfrac{a+c}{b+c}-\dfrac{a}{b}>0\Leftrightarrow\dfrac{ab+bc-ab-ac}{b\left(b+c\right)}>0\)
\(\Leftrightarrow\dfrac{c\left(b-a\right)}{b\left(b+c\right)}>0\)\(\Leftrightarrow b-a>0\Leftrightarrow b>a\Leftrightarrow\dfrac{a}{b}< 1\)(đúng vì GT)
cho a,b,c >0, a2+b2+c2=1
cmr : \(\dfrac{a^3}{b+c}+\dfrac{b^3}{a+c}+\dfrac{c^3}{a+b}\ge\dfrac{1}{2}\)
\(VT=\dfrac{a^4}{ab+ac}+\dfrac{b^4}{ab+bc}+\dfrac{c^4}{ac+bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\)
\(VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}=\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
Cho a,b,c,d là các số thực thỏa mãn a≥b≥c≥d>0 với a+b+c+d=1
CMR (a+2b+3c+4d)aabbccdd <1
cho a,b,c>0 thỏa mãn a+b+c=1
cmr: \(\left(\dfrac{1}{a}-1\right)\left(\dfrac{1}{b}-1\right)\left(\dfrac{1}{c}-1\right)\ge8\)
\(a+b+c=1=>\left\{{}\begin{matrix}1-a=b+c\\1-b=a+c\\1-c=a+b\\\end{matrix}\right.\)
\(=>A=\left(\dfrac{1}{a}-1\right)\left(\dfrac{1}{b}-1\right)\left(\dfrac{1}{c}-1\right)=\left(\dfrac{1-a}{a}\right)\left(\dfrac{1-b}{b}\right)\left(\dfrac{1-c}{c}\right)\)
\(=\left(\dfrac{b+c}{a}\right)\left(\dfrac{a+c}{b}\right)\left(\dfrac{a+b}{c}\right)\)
bbđt AM-GM
\(=>A\ge\dfrac{2\sqrt{bc}.2\sqrt{ac}.2\sqrt{ab}}{abc}=\dfrac{8abc}{abc}=8\left(đpcm\right)\)
dấu"=" xảy ra<=>\(a=b=c=\dfrac{1}{3}\)
Đặt vế trái BĐT cần chứng minh là P
Ta có:
\(P=\left(\dfrac{a+b+c}{a}-1\right)\left(\dfrac{a+b+c}{b}-1\right)\left(\dfrac{a+b+c}{c}-1\right)\)
\(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge\dfrac{2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}}{abc}=8\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Cho a,b,c>0 thỏa mãn ab+bc+ac<=1
CMR: \(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{3}{2}\)
\(ab+bc+ca\le1\)
\(\Rightarrow\sqrt{a^2+1}\ge\sqrt{a^2+ab+bc+ca}=\sqrt{\left(a+b\right)\left(a+c\right)}\)
\(\Rightarrow\dfrac{a}{\sqrt{a^2+1}}\le\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{a}{a+b}+\dfrac{a}{a+c}}{2}\)
\(tương\) \(tự\Rightarrow\Sigma\dfrac{a}{\sqrt{a^2+1}}\le\dfrac{\dfrac{a}{a+b}+\dfrac{a}{a+c}}{2}+\dfrac{\dfrac{b}{a+b}+\dfrac{b}{b+c}}{2}+\dfrac{\dfrac{c}{b+c}+\dfrac{c}{a+c}}{2}=\dfrac{3}{2}\left(đpcm\right)\)
\(dấu"="\Leftrightarrow a=b=c=\sqrt{\dfrac{1}{3}}\)
Cho a, b, c ≥ 0 thỏa mãn các điều kiện sau
a + b + c > 0
b + c ≥ 2a
Cho x, y, z >0 với xyz =1
CMR
Cho ba số a,b,c thỏa mãn a×b×c=1CMR 1/ab+a+1 + 1/bc+b+1 + 1/abc+bc+b =1
\(A=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+c+1}\)
\(A=\frac{c}{abc+ac+c}+\frac{ac}{abc\cdot c+abc+ac}+\frac{1}{ac+c+1}\)
\(A=\frac{c}{ac+c+1}+\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}\)
\(A=\frac{ac+c+1}{ac+c+1}\)
\(A=1\)
Cho các số dương a và b thoả man a+b=1CMR (1+1/a)(1+1/b) lớn hơn hoặc bằng 9
Có \(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\ge9\)
\(\Leftrightarrow\dfrac{a+1}{a}.\dfrac{b+1}{b}\ge9\)
\(\Leftrightarrow ab+a+b+1\ge9ab\) ( vì ab >0)
\(\Leftrightarrow a+b+1\ge8ab\)
\(\Leftrightarrow2\ge8ab\) \(\left(a+b=1\right)\)
\(\Leftrightarrow1\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\) \(\left(a+b=1\right)\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng)
\(\Leftrightarrowđpcm\)