\(VT=\dfrac{a^4}{ab+ac}+\dfrac{b^4}{ab+bc}+\dfrac{c^4}{ac+bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\)
\(VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}=\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
\(VT=\dfrac{a^4}{ab+ac}+\dfrac{b^4}{ab+bc}+\dfrac{c^4}{ac+bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\)
\(VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}=\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
cho a,b,c > 0 tìm giá trị nhỏ nhất của 2( a + b + c ) + \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) Khi a2+b2+c2 = 3
cho 3 số thực không âm a,b,c sao cho a2+b2+c2=1 . cmr \(\dfrac{bc}{a^2+1}+\dfrac{ca}{b^2+1}+\dfrac{ab}{c^2+1}\le\dfrac{3}{4}\) (giải chi tiết với ạ !!!!)
a2+b2+c2 =3P=9(a+b+c)+(\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)) min ?
Cho a,b,c > 0 chứng minh \(\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{c^2}{a^3}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Cho \(a,b,c>0\) thỏa mãn \(a^4+b^4+c^4=3\). Chứng minh:
\(\dfrac{a^2}{b^3+1}+\dfrac{b^2}{c^3+1}+\dfrac{c^2}{a^3+1}\ge\dfrac{3}{2}\)
Cho a,b,c >0. Chứng minh:
\(\dfrac{a^2}{b^5}+\dfrac{b^2}{c^5}+\dfrac{c^2}{a^5}\ge\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\)
Cho a,b,c >0. Chứng minh rằng:
\(\dfrac{a^3}{b^3}+\dfrac{b^3}{c^3}+\dfrac{c^3}{a^3}\ge\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\)
Cho a,b,c > 0
Chứng minh rằng: \(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\ge\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}+\dfrac{c^4}{a^2}\)
cho a,b,c >0 . Chứng minh \(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\ge\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\)