Cho bốn số a,b,c,d thỏa mãn điều kiện a ²+b ²=4a+6b-9 và 3c+4d=1. Tìm giá trị nhỏ nhất của biểu thức P=(a-c) ²+(b-d) ²
Cho a, b, c ≥ 0 thỏa mãn các điều kiện sau
a + b + c > 0
b + c ≥ 2a
Cho x, y, z >0 với xyz =1
CMR
Cho a, b, c là các số thực thỏa mãn a > 0, b > 0 và \(f\left(x\right)=ax^2+bx+c\ge0\). . Tìm Min \(Q=\dfrac{4a+c}{b}\)
Cho các số thực dương a, b thỏa mãn điều kiện: \(a+b< =1\). Tìm GTNN của biểu thức: \(P=\dfrac{b^2}{a^2b^2+b^2+1}+\dfrac{b}{2a}\)
cho 3 số thực a,b,c với a khác 0 sao cho ax^2+bx+c>=0.tìm giá trị nhỏ nhất của p=(2/b^2-2b+2) +a^2+c^2-b+1
1. Cho \(a,b,c>0\) và \(ab+bc+ca=abc\). Chứng minh rằng:
\(\dfrac{1}{a+3b+2c}+\dfrac{1}{b+3c+2a}+\dfrac{1}{c+3a+2b}\le\dfrac{1}{6}\)
2. Cho \(a,b\ge0\) và \(a+b=2\) Tìm Max
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+20ab\)
Cho a, b, c > 0 thỏa mãn a.b.c=1. Chứng minh rằng: \(\frac{bc}{a^2b+a^2c}+\frac{ac}{b^2a+b^2c}+\frac{ab}{c^2a+c^2b}\ge\frac{3}{2}\)
Cho các số thực dương a,b,c thỏa mãn a + b + c = 6. Chứng minh bất đẳng thức:
\(\dfrac{ab}{6+2b+c}+\dfrac{bc}{6+2c+a}+\dfrac{ca}{6+2a+b}\le1\).
cho các số dương a,b,c. chứng minh:
\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{a+b+c}{6}\)