Cho a,b,c,d là các số thực thỏa mãn a≥b≥c≥d>0 với a+b+c+d=1
CMR (a+2b+3c+4d)aabbccdd <1
Cho a, b, c là các số thực thỏa mãn a > 0, b > 0 và \(f\left(x\right)=ax^2+bx+c\ge0\). . Tìm Min \(Q=\dfrac{4a+c}{b}\)
Bài 1: Cho số thực dương ab + bc + ca =1. Tìm GTLN của
\(P=\dfrac{2a}{\sqrt{1+a^2}}+\dfrac{b}{\sqrt{1+b^2}}+\dfrac{c}{\sqrt{1+c^2}}\)
Bài 2: Cho x,y,z là số thực dương thỏa mãn x+y+z=xyz . CMR:
\(\dfrac{1+\sqrt{1+x^2}}{x}+\dfrac{1+\sqrt{1+y^2}}{y}+\dfrac{1+\sqrt{1+z^2}}{z}\le xyz\)
Cho bốn số a,b,c,d thỏa mãn điều kiện a ²+b ²=4a+6b-9 và 3c+4d=1. Tìm giá trị nhỏ nhất của biểu thức P=(a-c) ²+(b-d) ²
1) a) \(^{x^2}\)-2(m-1)x+ \(m^2\)-3m=0 có 2 nghiệm phân biệt x1, x2 thỏa mãn: \(x1^2+x2^2\)≤8
b) Phương trình \(x^2\)-mx+m-1=0 có hai nghiệm phân biệt x1, x2 thỏa điều kiện \(x1^2+x2^2\)-(x1+x2)≤12 khi m thuộc ?
2) Cho phương trình \(x^2\)-2mx+2m-1=0. Định m để phương trình có 2 nghiệm x1, x2 thỏa điều kiện: \(\left(x1+x2\right)^2\)-x1x2 ≥1
3) Tìm giá trị của tham số m sao cho phương trình: \(x^2\)+2(m+1)x+\(m^2\)+1=0 có 2 nghiệm phân biệt x1,x2 thỏa mãn x1+x2-x1x2= -6
4) Tìm m để bpt :(m+1)\(x^2\)+4mx-3m-5 lớn hơn 0 với mọi m
Cho tập hợp X thõa mãn điều kiện {3} c X c {3,4,5}. Số tập hợp X là:
A. 8 B.4 C.5 D.7
Biết rằng \(f\left(x\right)=ax^2+bx+c>0,\forall x\in R\). Mệnh đề nào sau đây sai (giải thích)
A. a + b + c >0
B. 5a - b + 2c > 0
C. 10a - 2b + 2c > 0
D. 11a - 3b + 5c > 0
Cho các số thực dương a, b thỏa mãn điều kiện: \(a+b< =1\). Tìm GTNN của biểu thức: \(P=\dfrac{b^2}{a^2b^2+b^2+1}+\dfrac{b}{2a}\)
phương trình nào tương đương với phương trình (3x^2) = 9?
A. (x+1)(x-1) = 0
B. x + 1 =0
C. x - 1 =0
D. x^2 = 2