Những câu hỏi liên quan
:vvv
Xem chi tiết
Akai Haruma
13 tháng 3 2021 lúc 14:32

Thay $x=\sqrt{\frac{1}{2,5}}; y=z=\sqrt{\frac{1}{0,25}}$ ta thấy đề sai bạn nhé!

Bình luận (8)
dinh huong
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 8 2021 lúc 20:40

\(\dfrac{x^3}{2y+1}+\dfrac{2y+1}{9}+\dfrac{1}{3}\ge3\sqrt[3]{\dfrac{x^3\left(2y+1\right)}{27\left(2y+1\right)}}=x\)

Tương tự: \(\dfrac{y^3}{2z+1}+\dfrac{2z+1}{9}+\dfrac{1}{3}\ge y\) ; \(\dfrac{z^3}{2x+1}+\dfrac{2x+1}{9}+\dfrac{1}{3}\ge z\)

Cộng vế:

\(VT+\dfrac{2\left(x+y+z\right)+3}{9}+1\ge x+y+z\)

\(\Rightarrow VT\ge\dfrac{7}{9}\left(x+y+z\right)-\dfrac{4}{3}\ge\dfrac{7}{9}.3\sqrt[3]{xyz}-\dfrac{4}{3}=1\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

Bình luận (0)
dinh huong
Xem chi tiết
ghdoes
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 12 2020 lúc 16:38

\(P\le\sqrt{3\left(\sum\dfrac{1}{\left(x+y\right)^2+\left(x+1\right)^2+4}\right)}\le\sqrt{3\left(\sum\dfrac{1}{4xy+4x+4}\right)}\)

\(P\le\sqrt{\dfrac{3}{4}\sum\left(\dfrac{1}{xy+x+1}\right)}=\dfrac{\sqrt{3}}{2}\)

\(P_{max}=\dfrac{\sqrt{3}}{2}\) khi \(x=y=z=1\)

Bình luận (0)
dinh huong
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 8 2021 lúc 21:17

\(\left(xy+yz+zx\right)^2\ge3xyz\left(x+y+z\right)=9\Rightarrow xy+yz+zx\ge3\)

\(2\left(x^2+y^2\right)-xy\ge\left(x+y\right)^2-\dfrac{1}{4}\left(x+y\right)^2=\dfrac{3}{4}\left(x+y\right)^2\)

Tương tự và nhân vế với vế:

\(VT\ge\dfrac{27}{64}\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2\)

Mặt khác ta có:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(x+y+z\right)\left(xy+yz+zx\right)-xyz\)

\(\ge\left(x+y+z\right)\left(xy+yz+zx\right)-\sqrt[3]{xyz}.\sqrt[3]{xy.yz.zx}\)

\(\ge\left(x+y+z\right)\left(xy+yz+xz\right)-\dfrac{1}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)

\(=\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\ge\dfrac{8}{9}\sqrt{3\left(xy+yz+zx\right)}.\left(xy+yz+zx\right)\)

\(\Rightarrow VT\ge\dfrac{27}{64}.\dfrac{64}{81}.3\left(xy+yz+zx\right)^3\ge3^3=27\) (đpcm)

Bình luận (1)
ILoveMath
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
Neet
13 tháng 5 2017 lúc 20:34

Áp dụng bất đẳng thức cauchy:

\(P=\sum\dfrac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}\ge\sum\dfrac{2x^2\sqrt{yz}}{y\sqrt{y}+2z\sqrt{z}}=\sum\dfrac{2\sqrt{x^3}\sqrt{xyz}}{\sqrt{y^3}+2\sqrt{z^3}}=\sum\dfrac{2\sqrt{x^3}}{\sqrt{y^3}+2\sqrt{z^3}}\)(vì xyz=1).

đặt \(\left\{{}\begin{matrix}\sqrt{x^3}=a\\\sqrt{y^3}=b\\\sqrt{z^3}=c\end{matrix}\right.\)(\(a,b,c>0\))thì giả thiết trở thành cho abc=1. tìm Min \(P=\dfrac{2a}{b+2c}+\dfrac{2b}{c+2a}+\dfrac{2c}{a+2b}\)

Áp dụng BĐT cauchy-schwarz:

\(P=2\left(\dfrac{a^2}{ab+2ac}+\dfrac{b^2}{bc+2ab}+\dfrac{c^2}{ac+2bc}\right)\ge\dfrac{2\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\dfrac{2\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=2\)( AM-GM \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\))

Dấu = xảy ra khi a=b=c=1 hay x=y=z=1

Bình luận (0)
Phạm Tuấn Kiệt
Xem chi tiết
TRAN XUAN TUNG
2 tháng 12 2019 lúc 20:32

Ta có:\(\frac{4+4\sqrt{1+x^2}}{4x}\le\frac{4+5+x^2}{4x}=\)\(\frac{x^2+9}{4x}\)Tương tự ta đc P\(\le\frac{x+y+z}{4}+\frac{9}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\left(\frac{xy+yz+zx}{xyz}\right)\)\(\le\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\cdot\frac{\left(x+y+z\right)^2}{3\left(x+y+z\right)}\)\(=x+y+z\)

Dấu '='xảy ra <=>\(\hept{\begin{cases}x+y+z=xyz\\x=y=z\end{cases}\Rightarrow x=y=z=}\)\(\frac{1}{\sqrt{3}}\)

Bình luận (0)
 Khách vãng lai đã xóa
Beautiful Angel
Xem chi tiết
Hung nguyen
28 tháng 4 2017 lúc 9:03

Ta đặt: \(\left\{{}\begin{matrix}\dfrac{1}{x^2}=a\\\dfrac{1}{y^2}=b\\\dfrac{1}{z^2}=c\end{matrix}\right.\)\(\Rightarrow\sqrt{abc}=abc=1\)

Ta có: \(\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{1}{\sqrt{b}+\sqrt{bc}+1}+\dfrac{1}{\sqrt{c}+\sqrt{ca}+1}\)

\(=\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{1}{\sqrt{b}+\dfrac{1}{\sqrt{a}}+1}+\dfrac{1}{\dfrac{1}{\sqrt{ab}}+\sqrt{ca}+1}\)

\(=\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{\sqrt{a}}{\sqrt{ba}+1+\sqrt{a}}+\dfrac{1}{1+\sqrt{ab}+\sqrt{a}}=1\)

Quay lại bài toán, sau khi đặt bài toán trở thành:

\(P=\dfrac{1}{2b+a+3}+\dfrac{1}{2c+b+3}+\dfrac{1}{2a+c+3}\)

\(=\dfrac{1}{\left(a+b\right)+\left(b+1\right)+2}+\dfrac{1}{\left(b+c\right)+\left(c+1\right)+2}+\dfrac{1}{\left(c+a\right)+\left(a+1\right)+2}\)

\(\le\dfrac{1}{2}\left(\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{1}{\sqrt{b}+\sqrt{bc}+1}+\dfrac{1}{\sqrt{c}+\sqrt{ca}+1}\right)=\dfrac{1}{2}\)

Bình luận (1)
Hung nguyen
28 tháng 4 2017 lúc 21:49

Cái đó t cố tình bỏ đấy. B phải tự làm chứ chẳng lẽ t làm hết??

Bình luận (2)