cho x,y,z>0 thỏa mãn \(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\).CMR \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\dfrac{3}{2}\sqrt{xyz}\)
cho x,y,z>0 thỏa mãn \(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}=1\\\).CMR
\(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\dfrac{3}{2}\sqrt{xyz}\)
Cho 0<x,y,z<\(\dfrac{\sqrt{3}}{2}\) thỏa mãn xy+yz+zx=\(\dfrac{3}{4}\)
Tìm Min \(Q=\dfrac{4x^2}{x\left(3-4x^2\right)}+\dfrac{4y^2}{y\left(3-4y^2\right)}+\dfrac{4z^2}{z\left(3-4z^2\right)}\)
Cho 0<x,y,z<\(\dfrac{\sqrt{3}}{2}\) thỏa mãn xy+yz+zx=\(\dfrac{3}{4}\)
Tìm Min Q=\(\dfrac{4x^2}{x\left(32-4x^2\right)}+\dfrac{4y^2}{y\left(32-4y^2\right)}+\dfrac{4z^2}{z\left(32-4z^2\right)}\)
Cho x, y, z > 0 thỏa mãn : x + y + z = xyz. CMR :
\(\dfrac{1+\sqrt{1+x^2}}{x}+\dfrac{1+\sqrt{1+y^2}}{y}+\dfrac{1+\sqrt{1+z^2}}{z}\le xyz\)
Cho x, y, z >0 thỏa mãn : xyz=1. CMR :
\(\dfrac{\sqrt{1+x^3+y^3}}{xy}+\dfrac{\sqrt{1+y^3+z^3}}{yz}+\dfrac{\sqrt{1+z^2+x^2}}{xz}\ge3\sqrt{3}\)
cho x,y,z là các số thực dương thỏa mãn x+y+z=xyz.CMR
\(\dfrac{x}{1+x^2}+\dfrac{2y}{1+y^2}+\dfrac{3z}{1+z^2}=\dfrac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
cho x,y,z là các số thực khác 0 thỏa mãn
\(\left\{{}\begin{matrix}\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xyz}=1\\x+y+z=1\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}>0\end{matrix}\right.\)
tính P=\(x^{2023}+y^{2023}+z^{2023}\)
Cho x, y, z > 0 và xyz=1. CMR :
\(\dfrac{x^2}{1+y}+\dfrac{y^2}{1+z}+\dfrac{z^2}{1+z}\ge\dfrac{3}{2}\)