cho biểu thức.\(\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)=2018\). Hãy tính tổng S=x+y
Cho x, y, z >0, x+y+z=2018. C/m biểu thức sau không phụ thuộc vào x:
m = x.\(\sqrt{\frac{\left(y^2+2018\right).\left(z^2+2018\right)}{x^2+2018}}+y.\sqrt{\frac{\left(x^2+2018\right).\left(z^2+2018\right)}{y^2+2018}}+z.\sqrt{\frac{\left(x^2+2018\right).\left(y^2+2018\right)}{z^2+2018}}\)
Cho x, y thỏa mãn: \(\left(x+\sqrt{2018+y^2}\right)\left(y+\sqrt{2018+x^2}\right)=2018\)
Tính x^3+y^3
thank nhé, chứng minh x+y=0 ra phải không?
\(\sqrt{x^2+2018}+x>\sqrt{x^2}>=x \)
=> \(\sqrt{x^2+2018}-x>0\)
=> \(\sqrt{x^2+2018}-x\)khác 0
=> (\(\left(\sqrt{x^2+2018}-x\right)\left(\sqrt{x^2+2018}+x\right)\left(\sqrt{y^2+2018}+y\right)=2018\left(\sqrt{x^2+2018}-x\right)\)
<=> 2018\(\left(\sqrt{y^2+2018}+y\right)\)= 2018\(\left(\sqrt{x^2+2018}-x\right)\)
<=> \(\sqrt{y^2+2018}+y=\sqrt{x^2+2018}-x\)
Chứng minh tương tự => \(\sqrt{x^2+2018}+x=\sqrt{y^2+2018}-y\)
Cộng 2 cái vào. Khử được hạng tử. suy ra đc x+y=0 rồi tự làm cưng e nhé
Cho \(\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)\)
Tính S=x+y
1. Giải phương trình sau:
\(x^3-3x^2+2\sqrt{\left(x+2\right)^3}-6x=0\)
2. Cho các số thực x,y thỏa mã điều kiện:
\(\sqrt{x^2+11}+\sqrt{x^2-2018}+x^2=\sqrt{y^2+11}+\sqrt{y^2-2018}+y^2\)
Tính giá trị biểu thức: \(M=x^{11}-y^{2018}\)
3. Cho tam giác ABC vuông tại A trên cạnh BC lấy điểm D bất kỳ. Gọi E và F lần lượt là hình chiếu của D trên cạnh AB và AC.
a) CM: DB.DC=EA.EB+FA.FC
b) Trên cạnh BC lấy điểm M sao cho ^BAD=^CAM
CMR: \(\dfrac{DB}{DC}.\dfrac{MB}{MC}=\dfrac{AB^2}{AC^2}\)
1.
đk: \(x\ge2\)
Đặt y = \(\sqrt{x+2}\) ta biến pt về dạng pt thuần nhất bậc 3 đối vs x và y:
ta có : \(x^3-3x^2+2y^3-6x=0\)
\(\Leftrightarrow x^3-3xy^2+2y^3=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\\x=-2y\end{matrix}\right.\)
ta sẽ có nghiệm : \(x=2;x=2-2\sqrt{3}\)
\(1.đk:\left(x+2\right)^3\ge0\Leftrightarrow x\ge-2\)
\(pt\Leftrightarrow x^3-3x\left(x+2\right)+2\sqrt{\left(x+2\right)^3}=0\)
\(\Leftrightarrow x^3-x\left(x+2\right)+2\sqrt{\left(x+3\right)^2}-2x\left(x+2\right)=0\)
\(\Leftrightarrow x\left[x^2-\left(x+2\right)\right]+2\left(x+2\right)\left(\sqrt{x+2}-x\right)=0\)
\(\Leftrightarrow x\left[\left(x-\sqrt{x+2}\right)\left(x+\sqrt{x+2}\right)\right]+2\left(x+2\right)\left(\sqrt{x+2}-x\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+2}-x\right)\left[-x\left(\sqrt{x+2}+x\right)+2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(\sqrt{x+2}-x\right)^2\left(2\sqrt{x+2}+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2}=x\left(2\right)\\2\sqrt{x+2}=-x\left(3\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2=x+2\end{matrix}\right.\)\(\Leftrightarrow x=2\left(tm\right)\)
\(\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}-x\ge0\Leftrightarrow x\le0\\x^2=4\left(x+2\right)\end{matrix}\right.\)\(\Leftrightarrow x=2-2\sqrt{3}\left(tm\right)\)
\(2.đk:x^2;y^2\ge2018\Leftrightarrow\left[{}\begin{matrix}x;y\le-\sqrt{2018}\\x;y\ge\sqrt{2018}\end{matrix}\right.\)
\(pt\Leftrightarrow\sqrt{x^2+11}-\sqrt{y^2+11}+\sqrt{x^2-2018}-\sqrt{y^2-2018}+x^2-y^2=0\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)+\dfrac{x^2+11-y^2-11}{\sqrt{x^2+11}+\sqrt{y^2+11}}+\dfrac{x^2-2018-y^2+2018}{\sqrt{x^2-2018}+\sqrt{y^2-2018}}=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left[1+\dfrac{1}{\sqrt{x^2+11}+\sqrt{y^2+11}}+\dfrac{1}{\sqrt{x^2-2018}+\sqrt{y^2+2018}}>0\right]=0\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
\(x=y\Rightarrow M=x^{11}-x^{2018}\)
\(x=-y\Rightarrow M=-y^{11}-y^{2018}=:vvv\) (đến đây chịu)
Cho \(\left(x+\sqrt{x^2+\sqrt{2018}}\right).\left(y+\sqrt{y^2+\sqrt{2018}}\right)=\sqrt{2018}\)
Tính x+y
Cho \(\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)=2018\)
Ta có: \(\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)=2018\)
\(\Leftrightarrow\left(x+\sqrt{x^2+2018}\right)\left(x-\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)=2018\left(x-\sqrt{x^2+2018}\right)\)
\(\Leftrightarrow\left(x^2-\left(x+2018\right)^2\right)\left(y+\sqrt{y^2+2018}\right)=2018\left(x-\sqrt{x^2+2018}\right)\)
\(\Leftrightarrow\left(x^2-x^2-2108\right)\left(y+\sqrt{y^2+2018}\right)=2018\left(x-\sqrt{x^2+2018}\right)\)
\(\Leftrightarrow-2018\left(y+\sqrt{y^2+2018}\right)=2018\left(x-\sqrt{x^2+2018}\right)\)
\(\Leftrightarrow-\left(y+\sqrt{y^2+2018}\right)=x-\sqrt{x^2+2018}\)
\(\Leftrightarrow-y-\sqrt{y^2+2018}=x-\sqrt{x^2+2018}\) (1)
Và có: \(\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)=2018\)
\(\Leftrightarrow\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)\left(y-\sqrt{y^2+2018}\right)=2018\left(y-\sqrt{y^2+2018}\right)\)
\(\Leftrightarrow\left(x-\sqrt{x^2+2018}\right)\left(y^2-y^2-2018\right)=2018\left(y-\sqrt{y^2+2018}\right)\)
\(\Leftrightarrow-2018\left(x-\sqrt{x^2+2018}\right)=2018\left(y-\left(\sqrt{y^2+2018}\right)\right)\)
\(\Leftrightarrow-x-\sqrt{x^2+2018}=y-\sqrt{y^2+2018}\) (2)
Lấy (1) + (2) vế + vế ta được:
\(\left(-y-\sqrt{y^2+2018}\right)+\left(-x-\sqrt{x^2+2018}\right)=\left(x-\sqrt{x^2+2018}\right)+\left(y-\sqrt{y^2+2018}\right)\)
<=>\(-y-\sqrt{y^2+2018}+-x-\sqrt{x^2+2018}=x-\sqrt{x^2+2018}+y-\sqrt{y^2+2018}\)
<=> -y - x = x + y
<=> 2y - 2x =0
<=> -2(x+y)=0
<=> x + y =0
vậy x+y=0
cộng điểm cho mk nha!!!!!!!!!!
cho các số dương x,y Thỏa \(\sqrt{x^2+2018}-2y=\sqrt{y^2+2018}-2x\)
Tính giá trị của biểu thức A= \(\left(x-y\right)^{2018}-2018x-2018y+181218\)
cho x; y thỏa mãn điều kiện \(3\left(x\sqrt{y-9}+y\sqrt{x-9}\right)=xy\)
Tính giá trị biểu thức: \(S=\left(x-17\right)^{2018}+\left(y-19\right)^{2019}\)
Ta có:
\(VT=\sqrt{9x\left(xy-9x\right)}+\sqrt{9y\left(xy-9y\right)}\le\frac{9x+xy-9x}{2}+\frac{9y+xy-9y}{2}\)
\(=xy=VP\)
Dấu = xảy ra khi \(x=y=18\)
\(\Rightarrow S=\left(18-17\right)^{2018}+\left(18-19\right)^{2019}=1-1=0\)
Ta có:
VT=\sqrt{9x\left(xy-9x\right)}+\sqrt{9y\left(xy-9y\right)}\le\frac{9x+xy-9x}{2}+\frac{9y+xy-9y}{2}VT=9x(xy−9x)+9y(xy−9y)≤29x+xy−9x+29y+xy−9y
=xy=VP=xy=VP
Dấu = xảy ra khi x=y=18x=y=18
\Rightarrow S=\left(18-17\right)^{2018}+\left(18-19\right)^{2019}=1-1=0⇒S=(18−17)2018+(18−19)2019=1−1=0