ìm các số hữ tỉ x để
\(\dfrac{3\sqrt{x}+11}{\sqrt{x}+2}\)
Tìm các số hữu tỉ x để \(\dfrac{3\sqrt{x}+11}{\sqrt{x}+2}\)là số nguyên
ĐK: \(x\ge0\)
\(A=\dfrac{3\sqrt{x}+11}{\sqrt{x}+2}\Leftrightarrow A\sqrt{x}+2A=3\sqrt{x}+11\)
\(\Leftrightarrow\left(A-3\right)\sqrt{x}=11-2A\left(1\right)\)
TH1: \(A=3\Rightarrow\) Không tồn tại x thỏa mãn.
TH2: \(A\ne3\)
\(\left(1\right)\Leftrightarrow\sqrt{x}=\dfrac{11-2A}{A-3}\ge0\)
\(\Rightarrow3< A\le\dfrac{11}{2}\)
Vậy \(3< A\le\dfrac{11}{2}\) thì \(A\in Z\).
a, tính Max A=\(\sqrt{x-1}+\sqrt{9-x}\)
b,Tìm tất cả các số hữu tỉ x để A=\(\dfrac{3\sqrt{x}+11}{\sqrt{x}+2}\)là số nguyên
Lời giải:
a.
Áp dụng BĐT Bunhiacopxky:
$A^2=(\sqrt{x-1}+\sqrt{9-x})^2\leq (x-1+9-x)(1+1)=16$
$\Rightarrow A\leq 4$
Vậy $A_{\max}=4$. Giá trị này đạt tại $x=5$
b.
$A=\frac{3(\sqrt{x}+2)+5}{\sqrt{x}+2}=3+\frac{5}{\sqrt{x}+2}$
Để $A$ nguyên thì $\frac{5}{\sqrt{x}+2}=m$ với $m$ nguyên dương
$\Leftrightarrow \sqrt{x}+2=\frac{5}{m}$
$\sqrt{x}=\frac{5-2m}{m}$
Vì $\sqrt{x}\geq 0$ nên $\frac{5-2m}{m}\geq 0$
Mà $m$ nguyên dương nên $5-2m\geq 0$
$\Leftrightarrow m\leq 2,5$.
$\Rightarrow m=1; 2$
$\Rightarrow x=9; x=\frac{1}{4}$
Cho biểu thức : M= \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{3-11\sqrt{x}}{9-x}\)
a) Rút gọn M
b) Tính M khi x= 11+\(6\sqrt{2}\)
c) tìm các giá trị x để M<1
a: \(=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{x-9}\)
\(=\dfrac{3x+9\sqrt{x}}{x-9}=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)
b: Khi x=11+6 căn 2 thì \(M=\dfrac{3\left(3+\sqrt{2}\right)}{3+\sqrt{2}-3}=\dfrac{9+3\sqrt{2}}{\sqrt{2}}=\dfrac{9\sqrt{2}+6}{2}\)
c: M<1
=>\(\dfrac{3\sqrt{x}-\sqrt{x}+3}{\sqrt{x}-3}< 0\)
=>căn x-3<0
=>0<x<9
`a,` \(M=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{3-11\sqrt{x}}{9-x}\) \(\left(x\ne\pm3;x>0\right)\)
\(M=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{x-9}-\dfrac{3+11\sqrt{x}}{x-9}\)
\(M=\dfrac{2x-6\sqrt{x}}{x-9}+\dfrac{x+3\sqrt{x}+\sqrt{x}+3}{x-9}-\dfrac{3+11\sqrt{x}}{x-9}\)
\(M=\dfrac{3x+9\sqrt{x}}{x-9}\)
\(M=\dfrac{3\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}\)
\(M=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)
`b,`Ta có :
\(M=\dfrac{3\sqrt{11+6\sqrt{2}}}{\sqrt{11+6\sqrt{2}}-3}\)
\(M=\dfrac{3\sqrt{\left(3+\sqrt{2}\right)^2}}{\sqrt{\left(3+\sqrt{2}\right)^2}-3}\)
\(M=\dfrac{3\left(3+\sqrt{2}\right)}{3+\sqrt{2}-3}\)
\(M=\dfrac{9+3\sqrt{2}}{\sqrt{2}}\)
\(M=\dfrac{6+9\sqrt{2}}{2}\)
`c,` Để `M<1` Ta có :
\(\dfrac{3\sqrt{x}}{\sqrt{x}-3}< 1\)
\(\dfrac{3\sqrt{x}}{\sqrt{x}-3}-1< 0\)
\(\dfrac{3\sqrt{x}}{\sqrt{x}-3}-\dfrac{\sqrt{x}-3}{\sqrt{x}-3}< 0\)
\(\dfrac{2\sqrt{x}+3}{\sqrt{x}-3}< 0\)
\(\sqrt{x}-3< 0\) ( vì \(2\sqrt{x}+3>0\) )
\(\sqrt{x}< 3\)
\(x< 9\)
Đối chiếu ĐKXĐ ta có : `0<x<9`
Cho biểu thức:
\(A=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{3-11\sqrt{x}}{9-x}\)
a) Rút gọn biểu thức A.
b) Tìm tất cả các giá trị của x để \(A\ge0\).
a: Ta có: \(A=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{3-11\sqrt{x}}{9-x}\)
\(=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)
b: Để \(A\ge0\) thì \(\sqrt{x}-3>0\)
hay x>9
Cho \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a) Tìm x để A=1
b) Tính A với \(x=4-2\sqrt{3}\)
c) Tìm x để 5A nguyên
a: Ta có: \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\dfrac{15\sqrt{x}-11-\left(3x+7\sqrt{x}-6\right)-\left(2x+\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
Rút gọn các biểu thức sau:
a) \(\dfrac{4}{\sqrt{11}-3}-\dfrac{5}{4+\sqrt{11}}\)
b) \(\left(\dfrac{3\sqrt{x}}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}+13}{x+6\sqrt{x}+9}\) với x>0;x\(\ne\)4
a: \(=6+2\sqrt{11}-4+\sqrt{11}=2+3\sqrt{11}\)
b: \(=\dfrac{3x+9\sqrt{x}-2x+4\sqrt{x}}{\left(\sqrt{x}+3\right)\left(x-2\sqrt{x}\right)}\cdot\dfrac{\left(\sqrt{x}+3\right)^2}{\sqrt{x}+13}=\dfrac{\sqrt{x}+3}{x-2\sqrt{x}}\)
1) cho biểu thức A= \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{3-11\sqrt{x}}{9-x}\)
B= \(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\) với \(0\le x\ne9\)
b) rút gọn A
c) tìm số nguyên x để P= A. B là số nguyên
giúp mk vs ah mk cần gấp lắm
\(A=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)\(A=\dfrac{2x-6\sqrt{x}+x+\sqrt{x+}3\sqrt{x}+3+3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)\(A=\dfrac{3x-13\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
P=\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{3-11\sqrt{x}}{9-x}\)
1. Tính P khi x=\(7+2\sqrt{3}\)
2. Tìm x để P<1
1) Ta có: \(P=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}-1}{\sqrt{x}-3}+\dfrac{3-11\sqrt{x}}{9-x}\)
\(=\dfrac{2x-6\sqrt{x}+x+2\sqrt{x}-3-3+11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3x+7\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3x+9\sqrt{x}-2\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+3\right)-2\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3\sqrt{x}-2}{\sqrt{x}-3}\)
Sửa đề: \(x=7+4\sqrt{3}\)
Thay \(x=7+4\sqrt{3}\) vào P, ta được:
\(P=\dfrac{3\left(2+\sqrt{3}\right)-2}{2+\sqrt{3}-3}=\dfrac{6+3\sqrt{3}-2}{\sqrt{3}-1}\)
\(=\dfrac{4+3\sqrt{3}}{\sqrt{3}-1}=\dfrac{13+7\sqrt{3}}{2}\)
\(\sqrt{2x+11}+\sqrt{x-1}\) ; \(\dfrac{\sqrt{-5x}}{x}\) ; \(\dfrac{\sqrt{7x^2+1}}{5}\); \(\sqrt{x^2-14x+33}\); \(\dfrac{\sqrt{-x^2+6x+16}}{-2}+\dfrac{x^2-2x}{3x^2}\)
Tìm ĐKXĐ của x để các biểu thức trên có nghĩa
a: ĐKXĐ: \(x\ge1\)
b: ĐKXĐ: \(x< 0\)
c: ĐKXĐ: \(\left[{}\begin{matrix}x\ge11\\x\le3\end{matrix}\right.\)
1) ĐKXĐ: \(\left\{{}\begin{matrix}2x+11\ge0\\x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow x\ge1\)
2) ĐKXĐ: \(\left\{{}\begin{matrix}-5x\ge0\\x\ne0\end{matrix}\right.\)\(\Leftrightarrow x< 0\)
3) ĐKXĐ: \(7x^2+1\ge0\left(đúng\forall x\right)\Leftrightarrow x\in R\)
4) ĐKXĐ: \(x^2-14x+33\ge0\Leftrightarrow\left(x-11\right)\left(x-3\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-11\ge0\\x-3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-11\le0\\x-3\le0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge11\\x\le3\end{matrix}\right.\)
5) ĐKXĐ:
+) \(-x^2+6x+16\ge0\)
\(\Leftrightarrow-\left(x^2-6x+9\right)+25\ge0\)
\(\Leftrightarrow\left(x-3\right)^2\le25\Leftrightarrow-5\le x-3\le5\)
\(\Leftrightarrow-2\le x\le8\)
+) \(3x^2\ne0\Leftrightarrow x\ne0\)
\(\Rightarrow\left\{{}\begin{matrix}-2\le x\le8\\x\ne0\end{matrix}\right.\)